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ABSTRACT

This paper develops, in a rigorous way, the optimal frequency-
domain widely linear minimum variance distortionless response
(MVDR) beamformer in the context of room acoustics. Therefore,
all second-order statistics of complex random signals will be taken
into account. We also develop the most useful performance measures
needed to evaluate the derived MVDR filter.

Index Terms— Minimum variance distortionless response
(MVDR), beamforming, speech enhancement, frequency domain,
noncircularity, widely linear estimation.

1. INTRODUCTION

The minimum variance distortionless response (MVDR) beam-
former for speech applications is usually formulated in the frequency
domain [1]. Frequency-domain signals are generally complex ran-
dom variables, even though the original time-domain signals are real
in the context of room acoustics. The main concern is then, how
to design the optimal frequency-domain MVDR filter that can fully
exploit the different statistics of the involved complex components.

A very important statistical characteristic of a complex random
variable (CRV) is the so-called circularity property or lack of it (non-
circularity) [2], [3]. A zero-mean CRV, A, is circular if and only
if the nonnull moments and cumulants are the only moments and
cumulants constructed with the same power in A and A∗ [4], [5],
where the superscript ∗ denotes complex conjugation. In particular,
A is said to be a second-order circular CRV (CCRV) if its so-called
pseudo-variance [2] is equal to zero, i.e., E

(
A2

)
= 0, where E(·)

denotes mathematical expectation, while its variance is nonnull, i.e.,
E

(|A|2) �= 0. A good measure of the second-order circularity is
the circularity quotient [2] defined as the ratio between the pseudo-
variance and the variance, i.e.,

γA =
E

(
A2

)
E (|A|2) . (1)

It is easy to show that 0 ≤ |γA| ≤ 1. We see from the above
that the second-order behavior of a CCRV is well described by its
variance. Note that the Fourier components of stationary signals are
CCRVs [6]. Another powerful aspect of the second-order circularity
is that the classical linear estimation theory for real random vari-
ables straightforwardly applies to CCRVs. However, the frequency-
domain components of some nonstationary signals (e.g., speech) are
not circular variables [7]. Then, many natural questions arise: is
the noncircularity useful in beamforming for speech applications? If
so, how do we use the noncircularity? How much this information
can improve the beamforming performance? What is the optimal
frequency-domain MVDR filter for noncircular CRVs? In this pa-
per, we don’t attempt to give answers to all these questions but we
only focus on the rigorous derivation of the MVDR in the frequency
domain. For that, we will investigate the use of the so-called widely

linear (WL) estimation theory [8] where two complex weight filters
are applied, one to the frequency-domain observation signals and the
other one to the complex conjugate of the same signals1. In particu-
lar, we will re-derive in the context of speech enhancement in room
acoustics, the optimal WL MVDR beamformer proposed in [9] in
the context of communications.

2. SIGNAL MODEL

We consider the conventional signal model in which an N -element
microphone array captures a convolved source signal in some noise
field. The received signals, at the discrete time-index k, are ex-
pressed as [1], [10], [11]

yn(k) = gn(k) ∗ s(k) + vn(k) (2)

= xn(k) + vn(k), n = 1, 2, . . . , N,

where gn(k) is the impulse response from the unknown source s(k)
to the nth microphone, ∗ stands for linear convolution, and vn(k)
is the additive noise at microphone n. We assume that the signals
xn(k) and vn(k) are uncorrelated and zero mean. By definition,
xn(k) is coherent across the array. The noise signals vn(k) are typ-
ically only partially coherent across the array. All previous signals
are considered to be real, nonstationary, and broadband.

In this paper, our desired signal is designated by the clean (but
convolved) signal received at microphone 1, namely x1(k). The
problem statement may be posed as follows [1]: given N mixtures
of two uncorrelated signals xn(k) and vn(k), our aim is to preserve
x1(k) while minimizing the contribution of the noise terms vn(k) in
the array output.

In the frequency domain, (2) can be rewritten as

Yn(f) = Gn(f)S(f) + Vn(f) (3)

= Xn(f) + Vn(f), n = 1, 2, . . . , N,

where Yn(f), Gn(f), S(f), Xn(f) = Gn(f)S(f), and Vn(f) are
the frequency-domain representations of yn(k), gn(k), s(k), xn(k),
and vn(k), respectively, at temporal frequency f .

The N microphone signals in the frequency domain are better
summarized in a vector notation as

y(f) = g(f)S(f) + v(f)

= x(f) + v(f)

= d(f)X1(f) + v(f), (4)

1We recall that only one complex weight filter is used in the classical
linear estimation theory



where

y(f) =
[

Y1(f) Y2(f) · · · YN (f)
]T

,

x(f) =
[

X1(f) X2(f) · · · XN (f)
]T

,

= S(f)
[

G1(f) G2(f) · · · GN (f)
]T

= S(f)g(f),

v(f) =
[

V1(f) V2(f) · · · VN (f)
]T

,

d(f) =
[

1 G2(f)
G1(f)

· · · GN (f)
G1(f)

]T

=
g(f)

G1(f)
,

and superscript T denotes transpose of a vector or a matrix. The
vector d(f) is termed the steering vector or direction vector since
it determines the direction of the desired signal X1(f). This defi-
nition is a generalization of the classical steering vector [12], [13]
to a reverberant (multipath) environment. Indeed, the acoustic im-
pulse response ratios from a broadband source to the aperture convey
information about the position of the source.

From (4), we easily deduce the covariance matrix of y(f), which
is

Φy(f) = E
[
y(f)yH(f)

]

= φX1(f)d(f)dH(f) + Φv(f), (5)

where φX1(f) = E
[|X1(f)|2] is the variance of X1(f) and Φv(f)

is the covariance matrix of v(f). The N × N matrix Φy(f) is the
sum of two matrices: one is of rank equal to 1 and the other one
(covariance matrix of the noise) is assumed to be full rank.

3. WIDELY LINEAR ARRAY MODEL

The classical linear frequency-domain beamforming is performed by
applying a complex weight to the output of each sensor and sum-
ming across the aperture. Since the frequency-domain components
are complex variables and may be noncircular due to the nonsta-
tionarity nature of the speech signal, the classical linear estimation
theory is not able to exploit all second-order statistics of the com-
plex components. Therefore, we need to resort to the WL estimation
theory [8] in order to consider all second-order statistics (including
the pseudo-variance) of the CRVs. With this in mind, the output of
the WL beamformer is now

Z(f) = hH(f)y(f) + h′H(f)y∗(f), (6)

where

h(f) =
[

H1(f) H2(f) · · · HN (f)
]T

,

h′(f) =
[

H ′
1(f) H ′

2(f) · · · H ′
N (f)

]T
,

are the two WL filters of length N which are suitable for performing
spatial filtering at frequency f and superscript H denotes transpose
conjugation of a vector or a matrix. The particular case h′(f) =
0N×1 leads us obviously to the classical linear beamforming.

Let us define the extended WL filter of length 2N :

h̃(f) =

[
h(f)
h′(f)

]
, (7)

and the extended observation vector of length 2N :

ỹ(f) =

[
y(f)
y∗(f)

]
(8)

= X1(f)d̃1(f) + X∗
1 (f)d̃2(f) + ṽ(f)

= x̃(f) + ṽ(f),

where

d̃1(f) =

[
d(f)
0N×1

]
,

d̃2(f) =

[
0N×1

d∗(f)

]
,

and x̃(f) and ṽ(f) are defined in a similar way to ỹ(f). The output
signal of the WL beamformer can be rewritten as

Z(f) = h̃
H

(f)ỹ(f)

= X1(f)h̃
H

(f)d̃1(f) + X∗
1 (f)h̃

H
(f)d̃2(f)

+ h̃
H

(f)ṽ(f). (9)

Unlike the classical linear beamforming theory where the beam-
former output signal consists of only the filtered desired signal and
residual noise, the signal estimate in (9) consists of an additional
term called interference [9]. Indeed if γX1(f) �= 0, the signal
X∗

1 (f) is correlated with X1(f) and contains both the desired signal
and an interference component. Therefore, we need to decompose
X∗

1 (f) into two orthogonal components as suggested in [9]:

X∗
1 (f) = γ∗

X1(f)X1(f) + X ′
1(f), (10)

where

X ′
1(f) = X∗

1 (f) − γ∗
X1(f)X1(f), (11)

E
[
X1(f)X ′∗

1 (f)
]

= 0. (12)

The variance of X ′
1(f) is

φX′
1
(f) = E

[∣∣X ′
1(f)

∣∣2]

= φX1(f)
[
1 − |γX1(f)|2] . (13)

Substituting (10) into (9), we find that

Z(f) = X1(f)h̃
H

(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]

+ X ′
1(f)h̃

H
(f)d̃2(f) + h̃

H
(f)ṽ(f) (14)

= X1,fd(f) + X ′
1,ri(f) + Vrn(f).

Now, we see that the right-hand side of (14) is the sum of three mutu-
ally uncorrelated terms: the overall filtered desired signal, the resid-
ual interference, and the residual additive noise. We then deduce the
variance of Z(f):

φZ(f) = h̃
H

(f)Φỹ(f)h̃(f)

= φX1,fd(f) + φX′
1,ri

(f) + φVrn(f), (15)

where

φX1,fd(f) = E
[|X1,fd(f)|2] (16)

= φX1(f)
∣∣∣h̃H

(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]∣∣∣2 ,

φX′
1,ri

(f) = E
[∣∣X ′

1,ri(f)
∣∣2] (17)

= φX1(f)
[
1 − |γX1(f)|2] ∣∣∣h̃H

(f)d̃2(f)
∣∣∣2 ,

φVrn(f) = h̃
H

(f)Φṽ(f)h̃(f). (18)



It is of interest to develop the covariance matrix of ỹ(f). We
have

Φỹ(f) = E
[
ỹ(f)ỹH(f)

]
(19)

= φX1(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
] ×[

d̃1(f) + γ∗
X1(f)d̃2(f)

]H
+

φX1(f)
[
1 − |γX1(f)|2] d̃2(f)d̃

H
2 (f) + Φṽ(f)

= Φx̃(f) + Φṽ(f)

=

[
Φy(f) Ψy(f)
Ψ∗

y (f) Φ∗
y (f)

]
,

where

Ψy(f) = E
[
y(f)yT (f)

]

= ψX1(f)d(f)dT (f) + Ψv(f) (20)

is the pseudo-covariance matrix of y(f), ψX1(f) = E
[
X2

1 (f)
]

is
the pseudo-variance of X1(f), and Ψv(f) is the pseudo-covariance
matrix of v(f).

4. PERFORMANCE MEASURES

In this section, we are going to define some narrowband performance
measures useful to study WL beamformers. Since the signal we want
to recover is the clean (but convolved) signal received at microphone
1, i.e., x1(k), microphone 1 is serving as the reference sensor.

We define the narrowband input SNR as

iSNR(f) =
φX1(f)

φV1(f)
, (21)

where φV1(f) = E
[|V1(f)|2] is the variance of the additive noise

at microphone 1.
To quantify the level of noise remaining in the output signal of

the WL beamformer, Z(f), we define the narrowband output SNR
as the ratio of the power of the filtered desired signal over the power
of the residual interference and noise2, i.e.,

oSNR
[
h̃(f)

]
=

φX1,fd(f)

φX′
1,ri

(f) + φVrn(f)
. (22)

The role of the WL beamformer is to produce a signal whose
SNR is higher than that which was received. To that end, the array
gain is defined as the ratio of the output SNR (after beamforming)
over the input SNR (at the reference microphone) [14]. This leads to
the following definition:

A [
h̃(f)

]
=

oSNR
[
h̃(f)

]
iSNR(f)

. (23)

The narrowband noise-reduction factor [15], [16] or narrowband
noise-rejection factor [17] quantifies the amount of noise being re-
jected by the beamformer. This quantity is defined as the ratio of the
power of the noise at the reference microphone over the power of the
interference and noise remaining at the beamformer output, i.e.,

ξnr

[
h̃(f)

]
=

φV1(f)

φX′
1,ri

(f) + φVrn(f)
. (24)

2In this paper, we consider the interference as part of the noise in the
definitions of the performance measures.

The noise-rejection factor is expected to be lower bounded by 1;
otherwise, the beamformer amplifies the noise received at the mi-
crophones. The higher the value of the noise-rejection factor, the
more the noise is rejected.

In practice, most beamforming algorithms distort the desired
signal. In order to quantify the level of this distortion, we define
the narrowband desired-signal-reduction factor [1] or narrowband
desired-signal-cancellation factor [17] as the ratio of the variance
of the desired signal at the reference microphone over the variance
of the filtered desired signal at the beamformer output, i.e.,

ξdsc

[
h̃(f)

]
=

φX1(f)

φX1,fd(f)

=
1∣∣∣h̃H

(f)
[
d̃1(f) + γ∗

X1
(f)d̃2(f)

]∣∣∣2
. (25)

A key observation is that the design of broadband beamformers that
do not cancel the broadband desired signal requires the constraint

h̃
H

(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]

= 1, ∀f. (26)

Thus, the desired-signal-cancellation factor is equal to 1 if there is
no cancellation and expected to be greater than 1 when cancellation
happens.

By making the appropriate substitutions, one can derive the fol-
lowing relationship between the array gain, noise-rejection factor,
and desired-signal-cancellation factor:

A [
h̃(f)

]
=

ξnr

[
h̃(f)

]
ξdsc

[
h̃(f)

] . (27)

When no distortion occurs, the array gain coincides with the noise-
reduction factor.

The narrowband beampattern is a convenient way to represent
the response of the beamformer to the signal x1(k) as a function of
the steering vector d(f) (or equivalently, the location of the source),
assuming the absence of any noise or interference. Therefore, the
narrowband beampattern is

B [d(f)] =
∣∣∣h̃H

(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]∣∣∣2 . (28)

It is interesting to observe how this beampattern depends on the cir-
cularity quotient of the desired signal. For a second-order CCRV
[i.e., γX1(f) = 0], (28) simplifies to the classical narrowband beam-
pattern:

B [d(f)] =
∣∣∣hH(f)d(f)

∣∣∣2 . (29)

5. OPTIMAL WIDELY LINEAR MVDR

The optimal WL MVDR filter is found by minimizing the variance of
the output signal of the WL beamformer with the constraint that the
desired signal is not distorted [9]. Mathematically this is equivalent
to

min
h̃(f)

h̃
H

(f)Φỹ(f)h̃(f)

subject to h̃
H

(f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]

= 1. (30)

We easily deduce the optimal WL MVDR beamformer:

h̃WL−MVDR(f) =
Φ−1

ỹ (f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]

C(f)
, (31)



where

C(f) =
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]H

Φ−1
ỹ (f) ×[

d̃1(f) + γ∗
X1(f)d̃2(f)

]
. (32)

Expression (31) depends on the acoustic impulse response ra-
tios. It is more convenient to write it as a function of the signal
statistics only. Let us first define two matrices and two vectors:

U10 =

[
IN×N 0N×N

0N×N 0N×N

]
, (33)

U01 =

[
0N×N 0N×N

0N×N IN×N

]
, (34)

u1 =

[
i

0N×1

]
, (35)

u2 =

[
0N×1

i

]
, (36)

where i =
[

1 0 · · · 0
]T

is a vector of length N . We start
by rewriting the elements that appear in the numerator of (31). The
first one is

Φ−1
ỹ (f)d̃1(f) = Φ−1

ỹ (f)d̃1(f)d̃
H
1 (f)u1

= φ−1
X1

(f)Φ−1
ỹ (f)U10Φx̃(f)U10u1

= φ−1
X1

(f)Φ−1
ỹ (f)U10Φx̃(f)u1. (37)

The second element is

γ∗
X1(f)Φ−1

ỹ (f)d̃2(f)

= γ∗
X1(f)Φ−1

ỹ (f)d̃2(f)d̃
H
2 (f)u2

= γ∗
X1(f)φ−1

X1
(f)Φ−1

ỹ (f)U01Φx̃(f)U01u2

= φ−1
X1

(f)γ∗
X1(f)Φ−1

ỹ (f)U01Φx̃(f)u2. (38)

Using (19), the denominator of (31) can be rewritten as

φ−1
X1

(f)tr
{
φX1(f)Φ−1

ỹ (f)
[
d̃1(f) + γ∗

X1(f)d̃2(f)
]×[

d̃1(f) + γ∗
X1(f)d̃2(f)

]H }
= φ−1

X1
(f)tr

{
Φ−1

ỹ (f)Φx̃(f) − φX1(f)
[
1 − |γX1(f)|2] ×

Φ−1
ỹ (f)d̃2(f)d̃

H
2 (f) }

= φ−1
X1

(f)tr
{
Φ−1

ỹ (f)Φx̃(f) − [
1 − |γX1(f)|2] ×

Φ−1
ỹ (f)U01Φx̃(f)U01 } , (39)

where tr{·} denotes the trace of a square matrix.
Using (37), (38), and (39), we deduce a new form of the optimal

WL MVDR filter:

h̃WL−MVDR(f) (40)

=
Φ−1

ỹ (f)
[
U10Φx̃(f)u1 + γ∗

X1(f)U01Φx̃(f)u2

]
C(f)

,

where now

C(f) = tr
[
Φ−1

ỹ (f)Φx̃(f)
] − [

1 − |γX1(f)|2] ×
tr

[
Φ−1

ỹ (f)U01Φx̃(f)U01

]
. (41)

6. CONCLUSIONS

When we work in the frequency domain, we generally deal with
complex random variables even though the original time-domain sig-
nals are real in the context of speech applications. A complex ran-
dom variable can be either (second-order) circular or noncircular de-
pending on whether its pseudo-variance is zero or not. Traditionally,
the frequency-domain components of speech are assumed to be cir-
cular and most beamforming approaches consider only the variance
of these components (or power spectra). Because speech signals are
highly nonstationary, they are noncircular in the frequency domain
and this noncircularity should be taken into account. In this paper,
we have first derived all important beamforming performance mea-
sures for a noncircular CRV and then derived the optimal frequency-
domain WL MVDR beamformer in the context of room acoustics.
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