
A GPU Implementation of the SRP-PHAT Sound
Source Localization Algorithm

Luiz G. da Silveira Jr., Vicente P. Minotto
Universidade do Vale do Rio dos Sinos

Dept. of Computer Science
Av. Unisinos, 950.

São Leopoldo, RS, 93022-000, Brazil
lgonzaga@unisinos.br, vminotto@gmail.com

Claudio R. Jung
Universidade Federal do Rio Grande do Sul

Institute of Informatics
Av. Bento Gonçalves, 9500

Porto Alegre, RS, 91501-970, Brazil
crjung@inf.ufrgs.br

Bowon Lee
Hewlett-Packard Labs

Mult. Comm. and Net. Lab
1501 Page Mill Road

Palo Alto, CA 94304, USA
bowon.lee@hp.com

Abstract—Microphone arrays have been widely used for hands-
free speech acquisition systems such as teleconferencing or
automatic speech recognition. They typically require sound
source localization for subsequent multichannel signal processing
algorithms such as beamforming for enhancing speech signals.
Steered response power with phase transform (SRP-PHAT)
source localization has been the most popular method thanks
to its robustness against reverberation. In most cases, the SRP-
PHAT requires exhaustive search methods, which makes its real-
time implementation a challenging task. In order to address this
problem, this paper presents a GPU (Graphic Processor Unit)
implementation that takes advantage of several parallel steps
involved the the computation of the SRP-PHAT.

Index Terms—Sound source localization, Steered response
power, Microphone array, Parallel processing, GPU implemen-
tation

I. I NTRODUCTION

Microphone array systems have gained popularity for appli-
cations that require robust estimation of speech signals against
noise, interfering sources, and reverberation [1]. In most
applications, they require sound source localization (SSL) for
subsequent multichannel signal processing algorithms such as
beamforming, dereverberation, echo cancellation, etc.

Sound source localization algorithms for speech acquisition
can be mainly divided into two categories. The first is a two-
stage method based on time difference of arrival (TDOA)
estimations followed by triangulation [2] and the second is
a search space-based method for finding a source location
with the maximum steered response power (SRP) [3] or the
maximum-likelihood (ML) [4], [5], among all candidate loca-
tions. The two-stage method is computationally inexpensive,
but is subject to fail due to TDOA estimation errors [6]. Unfor-
tunately, this is often the case in typical acoustic environments
for speech acquisition systems. The search space method
is robust, but requires a predefined search space resulting
in computational complexity proportional to the number of
candidate source locations. For capturing speech from meeting
participants in a typical conference room, for example, the
SRP-PHAT may require much higher computational complex-
ity for real-time applications on currently available processors
with moderate processing power.

Zhang et al. [4] showed that we can reduce the complexity

of the SRP-PHAT method fromO(M2) to O(M), whereM

is the number of microphones. Do et al. [7] proposed an iter-
ative hierarchical method calledstochastic region contraction
(SRC) to reduce the effective number of candidate sources
for SRP-PHAT. Even with these optimizations, a significant
computational load is still needed for each candidate source
location.

In this paper, we present a GPU (Graphics Processing Unit)
implementation of the SRP-PHAT source localization suitable
for real-time applications with a large search space. This paper
is organized as follows. In Section II, we describe microphone
array signal models and the SRP-PHAT method for SSL.
Section III describes our GPGPU implementation of the SRP-
PHAT method for real-time applications. Section IV describes
experimental results followed by discussions on Section V.
Section VI concludes this paper.

II. SOUND SOURCELOCALIZATION

For an array ofM microphones, the signalxm(t) captured
at themth microphone can be expressed as follows

xm(t) = s(t − τq

m) + vm(t), for m = 1, 2, · · · ,M (1)

wheres(t) is the source signal,vm(t) is a term due to rever-
beration, interferences, and background noise, andτq

m denotes
propagation delay of the signals(t) from a source locationq
to themth microphone. For simplicity, we assume that the dif-
ferences in attenuation caused by propagation from the source
to the microphones are negligible. With this signal model, we
can express a vectorXω = [X1(ω),X2(ω), · · · ,XM (ω)]T of
the microphone signals in the frequency domain as

Xω = S(ω)Dq

ω + Vω, (2)

where

Dq

ω = [e−jωτ
q

1 , e−jωτ
q

2 , · · · , e−jωτ
q

M]T

Vq

ω = [V1(ω), V2(ω), · · · , VM (ω)]T

denote delay and noise vectors respectively. Thus, SSL is a
problem of finding a source locationq corresponding to a set
of delay vectorsDq

ω given observationsXω.

A. Steered Response Power Method

The steered response power (SRP) method computes the
output power of a filter-and-sum beamformer for all possible
source locations and then selects one with the maximum
power [3]. In the frequency domain, the power of a candidate
source locationq can be expressed as

P (q) =

M
∑

m=1

M
∑

l=1

∫

Ψml(ω)Xm(ω)X∗
l (ω)ejω(τq

m
−τ

q

l
)dω,

(3)
whereΨml(ω) is the frequency weighting for more accurate
source location estimate. One of the most popular weighting
is thephase transform (PHAT) [8]

Ψml(ω) =
1

|Xm(ω)X∗
l (ω)|

, (4)

and Zhang et al. [4] showed that Eq. (3) with the PHAT
weighting is equivalent to

P (q) =

∫

∣

∣

∣

∣

∣

M
∑

m=1

Xm(ω)

|Xm(ω)|
ejωτq

m

∣

∣

∣

∣

∣

2

dω, (5)

which reduces the number of computations by a factor ofM .
After computingP (q), we can find the source location as

q̂ = arg max
q∈Q

P (q), (6)

where Q denotes the search space of all potential source
locations.

III. GPU PROCESSING OF THESRP-PHAT COMPUTATION

A. Common approaches for GPU implementation of generic
algorithms

While the SRP-PHAT method requires exhaustive compu-
tational processing, GPU can provide massively multithreaded
manycore chips with hundreds of scalar processors, running
tens of thousands of threads, and giving more than one TFLOP
peak performance [9]. GPU vendors usually offer parallel
programming languages with a corresponding API (Appli-
cation Programming Interface) that allow users to develop
generic purpose applications running on their GPU units. An
interesting property of such programming languages is thatthe
user does not need to have knowledge about the traditional
graphics pipeline model and its API.

Nowadays, the main GPU computing platform is nVIDIA’s
CUDA (Compute Unified Device Architecture) [10]. Besides
CUDA, there is an open standard for GPU Computing, called
OpenCL (Open Computing Language), which is distributed
freely and provides compatibility to the main GPU manufac-
turers nVIDIA and ATI. However, CUDA has been more stable
and also more extensively explored for high performance
computing on GPUs, while OpenCL focuses on portability and
heterogeneous platforms (CPU and GPU) jointly for increased
performance. In fact, OpenCL implementation is still incipient
and cannot offer high performance results when compared with
CUDA.

CUDA is scalable parallel programming model and accom-
panied by an API for GPU (and other parallel processors),
which allows direct programming in C/C++ language by
approaching data-parallel aspects and workload. In practice,
we can consider that CUDA extends C/C++ languages, pro-
viding all support to exploit massively the parallelism fornon-
graphics applications.

However, to successfully achieve high performance using
CUDA, the problem data must be initially parallelized, prefer-
ably with all data fully transfered to device memory (GPU
memory), to avoid significant data transfers from the main
memory to the device memory (which are costly and may be
the bottleneck of GPU implementations of genetic algorithms).
Then, the application can be scaled to hundred of processor
cores and thousand of concurrently threads.

B. SRP-PHAT Algorithm on CUDA

The computational cost of the SRP-PHAT algorithm de-
pends on several parameters, such as the size of the micro-
phone array (i.e. the number of microphones), the size of the
discretized search spaceQ, and the sampling frequency of
the data acquisition device. In this work, we consider thatQ
consists of aN × N 2D grid of equally spaced points, and
that we haveM + 1 microphones in the array.

Before providing specific details of our implementation, it
is important to mention that given two discretized positionsq1

andq2 in the search spaceQ, the valuesP (q1) andP (q2) in
Equation (5) can be done in a completely independent manner,
which allows a highly parallel implementation of the SRP-
PHAT algorithm.

There are different possibilities to tackle the CUDA imple-
mentation of the SRP-PHAT algorithm. In this paper, we have
considered one thread by each candidate sound location in the
2-D grid in the CUDA configuration. Then, the output of each
thread is one calculation ofP (q) as given in Equation (5),
whereq corresponds to an element inQ. As consequence, the
scalability of the algorithm running on GPU highly depends
on size ofQ, which grows quadratically withN . The load of
each thread depends on the size of the audio buffer (which
is used to compute the FFT and approximate in integral in
Equation (5), and also on the number of microphones in the
array. Assuming a constant buffer size, the load of each thread
grows linearly withM .

Hence, in the proposed CUDA implementation of the SRP-
PHAT algorithm, increasing the size ofQ should not affect
significantly the overall cost, as long as there are enough
parallel threads running on the GPU. On the other hand,
increasing the number of microphones should increase linearly
the overall cost of the implementation.

IV. EXPERIMENTS

We have planned a set of experiments, in order to evaluate
and validate the GPU-based SRP-PHAT implementation. The
prototype has been tested considering different hardware setup,
varying mainly the GPUs. The measurements of elapsed times

10 20 30 40 50 60 70 80 90 100

10
−2

10
−1

10
0

number of microphones

tim
e

(s
)

10 x 10 search space

CPU1
CPU2
GPU1
GPU2

10 20 30 40 50 60 70 80 90 100

10
−1

10
0

10
1

number of microphones
tim

e
(s

)

50 x 50 search space

CPU1
CPU2
GPU1
GPU2

10 20 30 40 50 60 70 80 90 100

10
0

10
1

10
2

number of microphones

tim
e

(s
)

100 x 100 search space

CPU1
CPU2
GPU1
GPU2

10 20 30 40 50 60 70 80 90 100

10
1

10
2

10
3

number of microphones

tim
e

(s
)

500 x 500 search space

CPU1
CPU2
GPU1
GPU2

Fig. 1. Execution times varying the number of microphones and the size of the search space.

for different combinations of number of microphones (M)1

and grid size (N×N), assuming an acquisition rate of 44 kHz
and a buffer size of 4096 samples (so that real time execution
should process 10 SRP-PHATs per second).

For the CPU experiments, we used a C++ implementation of
the SRP-PHAT algorithm running on a notebook with an Intel
Core i7-720QM processor (4 1.6 GHz cores, 8 threads), and
the proposed CUDA implementation running on a GeForce
9600GT GPU with 512MB dedicated memory, and a GeForce
9800GTX GPU, with 768MB dedicated memory. For the CPU
tests, we used a single-threaded experiment (called CPU1 in
the experiments) and a multi-threaded implementation with
eight threads (CPU2). The experiments with the GeForce
9600GT and 9800GTX cards are called, respectively, GPU1
and GPU2.

Fig. 1 shows the obtained execution times for the four tested

1Since we have a 6-microphone array, results withM > 6 were simulated.

algorithms (CPU1, CPU2, GPU1 and GPU2), varying the size
of the search size. Each Figure illustrates the evolution ofthe
execution times as the number of microphones is increased,
and the vertical axis (time) is shown in logarithmic scale
for a better visualization of the differences. Fig. 2 shows
a comparison of the execution times of the four analyzed
implementations fixing the number of microphones (50), and
varying the size of the search space. An analysis of this results
is presented in the next section.

V. D ISCUSSIONS

It can be observed in Fig. 1 that the execution times obtained
with the CUDA implementation running on both a lower-
end GPU (GeForce 9600GT) and a higher-end GPU (GeForce
9800GTX) were similar for a small search region (10×10), but
the difference increases as the search space gets larger. Infact,
results obtained with the 9800GTX card are approximately
1.2 times faster than the 9600GT card for a10 × 10 search

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

size of the search space

tim
e

(s
)

50 microphones

CPU1
CPU2
GPU1
GPU2

Fig. 2. Execution times for a 50-microphone array, varying thesize of the
search region.

Size of the search space
10× 10 50× 50 100× 100 500× 500

CPU2 3.10 3.82 3.95 3.95
GPU1 138.22 120.20 129.50 120.50
GPU2 170.47 242.25 261.00 273.64

TABLE I
SPEED-UPS OFCPU2, GPU1AND GPU2COMPARED TOCPU1FOR

DIFFERENT SEARCH SPACES

region, and approximately2.3 times faster in the500 × 500
search region. It should be noted that the 9800GTX card is
equipped with128 cores [11] compared to64 cores that the
9600GT is equipped with [12], which clearly indicates that
having a larger number of cores is beneficial for computing
the SRP-PHAT with large search spaces.

Fig. 1 also shows that our CUDA implementation presented
lower execution times when compared to a single-threaded
implementation on a high-end CPU (Intel Core i7-720QM
processor) in all tested configurations (variations in the size
of the microphone array and search size). The multi-threaded
CPU implementation presented an average speed-up of 3.8
times when compared to the single-threaded implementation,
but still considerably lower than both GPUs, particularly when
compared to the GeForce 9800GTX results.

Fig. 2 shows a comparison of execution times for a 50-mic
array varying the size of the search space, and Table I shows
the average speed-ups of CPU2, GPU1 and GPU2 compared
to CPU1 for different search spaces. As it can be observed, the
execution time difference between the best GPU result (GPU2)
and the best CPU result (CPU2) is smaller for small search
spaces, and it increases as the search size grows. Considering
all evaluated search spaces, GPU2 is in average 63 times faster
than CPU2 (the speed-up is around 55 for the10× 10 search
region, and around 69 for the500 × 500 search region).

It is important to mention that our CUDA implementation
running on both GPUs can handle real-time performance (i.e.
processing time< 0.1s) for arrays with 10 microphones, and
search regions having up to50 × 50 points (for a100 × 100
region, the running time of the 9800GTX card is≈ 0.17s).
The single-threaded CPU implementation could not handle
real-time processing in any of the tested configurations. Even
the multi-threaded approach could only provide real-time
performance for a 6-mic array with a10 × 10 search size
with the direct implementation of the SRP-PHAT algorithm.

VI. CONCLUSION

In this paper, we presented a GPU implementation of the
SRP-PHAT SSL algorithm. In the proposed implementation,
the computation of the SRP-PHAT for each position of the dis-
cretized space is related to a GPU thread, which are executed
concurrently (up to the maximum number of threads allowed
by the graphic hardware). The experimental results showed
that GPU implementations on widely available graphic cards
may present significant speed-ups when compared to single
or multi-threaded implementations on recent (and powerful)
CPU configurations.

ACKNOWLEDGMENT

This work was developed in cooperation with Hewlett-
Packard Brasil Ltda. using incentives of Brazilian Informatics
Law (Law n 8.2.48 of 1991).

REFERENCES

[1] M. S. Brandstein and D. B. Ward,Microphone Arrays: Signal Processing
Techniques and Applications. Berlin, Germany: Springer-Verlag, 2001.

[2] M. Brandstein, J. Adcock, and H. Silverman, “A closed-form location
estimator for use with room environment microphone arrays,”IEEE
Trans. Speech and Audio Process., vol. 5, pp. 45–50, 1997.

[3] J. DiBiase, “A high-accuracy, low-latency technique for talker localiza-
tion in reverberant environments,” Ph.D. dissertation, Brown University,
Providence, RI, May 2000.

[4] C. Zhang, Z. Zhang, and D. Florêncio, “Maximum likelihood sound
source localization for multiple directional microphones,”in Proc. Int.
Conf. Acoust., Speech, and Signal Process., vol. I, 2007, pp. 125–128.

[5] B. Lee, T. Kalker, and R. W. Schafer, “Maximum-likelihood sound
source localization with a multivariate complex Laplacian distribution,”
in Proc. Int. Workshop. Acoustic Echo and Noise Control, 2008.

[6] S. Bédard, B. Champagne, and A. Stéphenne, “Effects of room reverber-
ation on time-delay estimation performance,” inProc. Int. Conf. Acoust.,
Speech, and Signal Process., vol. II, 1994, pp. 261–264.

[7] H. Do, H. F. Silverman, and Y. Yu, “A real-time SRP-PHAT source
location implementation using stochastic region contraction (SRC) on
a large-aperture microphone array,” inProc. Int. Conf. Acoust., Speech,
and Signal Process., vol. I, 2007, pp. 121–124.

[8] C. H. Knapp and G. C. Carter, “The generalized correlation method
for estimation of time-delay,”IEEE Trans. Acoust., Speech and Audio
Process., vol. ASSP-24, no. 4, pp. 320–327, 1976.

[9] D. A. Patterson and J. L. Hennessy,Computer Organization and Design:
The Hardware/Software Interface. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008.

[10] CUDA Programming Guide, NVIDIA Corporation, 2 2010, http://
developer.nvidia.com.

[11] GeForce 9800 GTX, NVIDIA Corporation, http://www.nvidia.com/
object/productgeforce 9800 gtx us.html.

[12] GeForce 9600 GT, NVIDIA Corporation, http://www.nvidia.com/object/
product geforce 9600gt us.html.

