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Abstract—This work investigates the use of channel shortening
(CS) in equalization of acoustic systems. Channel shortening tech-
niques have been extensively developed in the context of digital
communications and applied to acoustic systems. However, at this
point of time, the use of CS for acoustic system equalization has
not been well established. A mathematical link between the MINT
and the traditional CS is derived. In multichannel scenarios, CS
can provide multiple solutions but not all of them are useful in
the sense of perceptual quality. Therefore, a criterion for spelling
out a perceptually advantageous equalization system from the
multiple solutions to CS is provided. Relaxed multichannel least-
squares (RMCLS) method is presented and simulations confirm
that the RMCLS outperforms CS in the presence of channel
estimation errors.

I. INTRODUCTION

System equalization can be potentially used to remove
the adverse effects of reverberation cause by a convolutive
acoustic channel between a talker and the receiving micro-
phone. This work considers the case when the acoustic channel
impulse response has already been estimated and the task at
hand is to employ this estimate in order to design an equalizer
that will improved the perceived quality of the speech signal. A
typical application of this technique is for speech enhancement
of hands-free speech captured in reverberant rooms. Channel
shortening (CS) techniques have been extensively developed
in the context of digital communications to mitigate the inter-
symbol and inter-carrier interference. Both closed-form [1]
and adaptive [2]–[4] methods have been well studied. These
techniques have been extended for multiple-input/multiple-
output (MIMO) systems in [5], [6]. A common frame work for
CS can be found in [7]. Channel shortening has been used for
acoustic system equalization in [8] and [9]. In previous work,
the main issue of concern is that the channel impulse response
is shortened; the coefficients of the impulse response after
shortening are of no concern. In acoustic system equalization
however, the coefficients of the shortened impulse response
are important in that they can lead to different perceptual
sound quality. In their latest work presented in [10], the authors
considered the psychoacoustic property of masking effects in
shortening single-channel impulse response.

In this work, we discuss the use of channel shortening with
respect to perceptual sound quality for multichannel systems.
Before Section V, true impulse responses without estimation
error are assumed to be known. In Section V, the robustness

of CS to channel estimation errors is considered.
Consider an M -channel acoustic system h =

[hT
1 · · · hT

M ]T . The acoustic channel between the source and
the mth microphone is characterized by its impulse response
hm = [hm(0) hm(1) . . . hm(L − 1)]T , m = 1, . . . , M ,
where {·}T denotes the transpose operation. In our work
we assume that the acoustic channels are time-invariant. In
a unified form [7], which is adopted in [9], CS aims to use
a multichannel equalization system g = [gT

1 gT
2 · · · gT

M ]T ,
where gm = [gm(0) gm(1) . . . gm(Li − 1)]T is the mth
component of length Li, to maximize a generalized Rayleigh
quotient

g = arg max
g

gT Bg
gT Ag

, (1)

where

B = HT diag{wd}T diag{wd}H
A = HT diag{wu}T diag{wu}H

with H = [H1 · · · HM ] and Hm the (L + Li − 1) × Li

convolution matrix of hm, and

wd = [0 · · · 0︸ ︷︷ ︸
τ

1 · · · 1︸ ︷︷ ︸
Lw

0 · · · 0]T[L+Li−1]

wu = 1[(L+Li−1)×1] −wd,

where τ is an optional integer delay, and Lw defines the region
that is maximized and will be referred to as the window area.
In contrast, the region outside the window area will be referred
to as wall area. For the sake of discussion, here we define
the equalized impulse response (EIR), which is the impulse
response from the source to the output of the equalization
system,

b(i) =
M∑

m=1

hm(i) ∗ gm(i), (2)

where ∗ denotes linear convolution.
For single-channel system shortening, since the target short-

ening length Lw is always desired to be smaller than the chan-
nel length L, A is of full rank. For multichannel shortening
and for specific design parameters settings, A can be rank
deficient. For a rank deficient A, (1) has multiple solutions.
Any of these solutions leads to an EIR containing only zeros in
the wall area, but different solutions lead to EIRs of different



window area coefficients. In digital communications, the main
issue of concern is that the Rayleigh quotient in (1) is max-
imized; the coefficients in the window area after shortening
are not important. In acoustic system equalization however,
although all solutions maximize the Rayleigh quotient, the
resulting EIRs are different from a perceptual point of view.
Some of them result in improved perceptual sound quality after
equalization compared to before, but some do not.

In this paper, firstly, a mathematical link between the CS and
the well-known multiple-input/output inverse theorem (MINT)
[11] is derived. Next, a criterion for selecting perceptually
advantageous equalization system from the multiple solutions
to CS is provided. Then, an alternative approach to CS,
which we call relaxed multichannel least-squares (RMCLS),
is proposed. After this, since in practice the true channel
impulse responses are not available and what we have are
their estimates, the robustness of MINT, CS, and RMCLS to
channel estimation errors is investigated.

II. A LINK BETWEEN MINT AND CHANNEL SHORTENING

As shown by MINT, solution(s) to the system of equations

Hg = d, (3)

where
d = [0 · · · 0︸ ︷︷ ︸

τ

1 0 . . . 0]T[L+Li−1], (4)

exist when the following two conditions are both satisfied:
C-1 Hm(z−1), the z-transforms of the multichannel im-

pulse responses hm do not share any common zeros
[11].

C-2 The length of gm Li ≥ Lc [12]1, where

Lc =
⌈

L− 1
M − 1

⌉
(5)

where dκe denotes the smallest integer larger than or
equal to κ.

When both C-1 and C-2 are satisfied, A is rank deficient.
Therefore, g that satisfies

{
gT Ag = 0
gT Bg 6= 0 (6)

maximizes the Rayleigh quotient in (1). Equivalently, since
F .= HT H = B + A, g that satisfies

{
gT Ag = 0
gT Fg 6= 0 (7)

is a solution to (1).
The matrix H is full row-rank [12], and the rank of F is

(L + Li − 1). Since

dim(null(F)) = MLi − (L + Li − 1) .= LF , (8)

where dim(·) denotes the dimension and null(·) denotes the
null space, we assume vectors p1, p2, . . . , pLF to be a basis

1It should be noted that solution(s) to (3) always exist when Li ≥ L− 1
[13]. Unfortunately, this cannot be guaranteed when Li ≥ Lc. However, it
has been proved in [12] that solution(s) exist for almost all cases.

of null(F). Since

dim(null(A)) = MLi − (L + Li − 1− Lw) (9)

and null(F) ⊂ null(A), we can assume g1
CS, g2

CS, . . ., gLw

CS ,
p1, p2, . . ., pLF to be a basis of null(A). Any solution to
(1), which is in the space null(A)\null(F), where \ denotes
exclusion operator, can be expressed as

g = [g1
CS g2

CS · · · gLw

CS p1 p2 . . . pLF ]
[

t[Lw×1]

r[LF×1]

]
, (10)

with t[Lw×1] 6= 0.
In [7], the g maximizing the quotient in (1) is found by

solving the the generalized eigenvalue problem

Bg = λAg. (11)

The solution to (1) is obtained by computing the eigenvector
relating to the largest eigenvalue. For rank deficient A, (11)
can be solved using the QZ algorithm [14]. In this work,
the MATLAB function eig(B,A, ‘qz’) which employs the QZ
algorithm is used to solve (11). Lw vectors relating to λ = ∞
can be obtained. Without loss of generality, we assume the
Lw vectors obtained from solving the generalized eigenvalue
problem are g1

CS, g2
CS, . . . , gLw

CS . Since the equalization
system(s) obtained from MINT satisfy (7) as well, there must
be one MINT solution which can be expressed as a linear
combination of these Lw vectors. We have

H[g1
CS g2

CS · · · gLw

CS ] =




0[τ×Lw]

D[Lw×Lw]

0[(L+Li−1−τ−Lw)×Lw]


 , (12)

where D is a full-rank matrix. Letting

q = D−1d′, (13)

where d′ = [1 0 . . . 0]T[Lw], we have

H[g1
CS g2

CS · · · gLw

CS ]q = d. (14)

Therefore, [g1
CS g2

CS · · · gLw

CS ]q, which is a linear combination
of the Lw vectors obtained from channel shortening, is an
MINT solution.

III. A CRITERION FOR SELECTING A PERCEPTUALLY
ADVANTAGEOUS EQUALIZATION SYSTEM

The MATLAB function eig(B,A, ‘qz’) provides Lw inde-
pendent vectors corresponding to λ = ∞. Using these vectors
as equalization systems, some of them result in EIRs which
lead to improved perceptual speech quality after equalization
compared to the original received signal, but some do not.

Figure 1(a) and (b) shows two EIRs resulting from two
equalization systems of the Lw solutions obtained by solving
the generalized eigenvalue problem, for which a 2-channel
system from MARDY database [15] with L = 2000 is used
and design parameters are set to Li = Lc, τ = 0, and
Lw = 400 (corresponding to 50 ms for sampling frequency
fs = 8 kHz, which is a typical transition time between early
reflections and late reflections for room impulse responses
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Fig. 1. (a) An EIR obtained from CS resulting in perceptually improved
speech, (b) an EIR obtained from CS resulting in perceptually degraded
speech, and (c) EIR obtained from RMCLS. Note that all the EIRs equal
0 after 0.05 s.

(RIRs)). Perceptually, for an RIR, early reflections are not
perceived as separate sound events but instead cause a spectral
distortion called colouration, whereas late reflections often
form a background ambience which is distinct from the
foreground sound and may impair speech intelligibility [16].
Although these two EIRs in Fig. 1 only have early reflections,
they may not be both satisfactory for perception. It can be
seen that the window area shown in Fig. 1(a) has a decaying
pattern which is similar to that of an RIR, whereas the one
shown in Fig. 1(b) has a non-decaying pattern. We conducted
informal listening tests to investigate the sound quality of
speech relating to the different EIRs. In the tests, speech
segments were listened using a Sennheiser HD 650 headphone
by 8 subjects. The following questions were investigated in
the tests: is the speech warm or not warm, thin or not thin,
perceptually close to or not close to the anechoic speech?
The obtained results indicated that speech relating to the EIR
in Fig. 1(b) is perceived as thin and harsh, whereas speech
relating to the EIR in Fig. 1(a) is perceived as warm, closer
to the anechoic speech, and is perceptually preferred. The
speech resulting from some other solutions obtained from the
generalized eigenvalue decomposition sounds similar to that
relating to the EIR in Fig. 1(b) and the solution leading to
the EIR in Fig. 1(a) is preferred over these solutions. An
exhaustive comparison of all Lw solutions is not necessary
when a criterion is available with which the solution leading
to the EIR in Fig. 1(a) can be picked out. We found that
the solution leading to the EIR in Fig. 1(a) has the following

characteristic: among the EIRs resulted from all Lw solutions,
the EIR resulted from it has minimum `2-norm.

Experiments with 30 different acoustic systems show that
an equalization system leading to an EIR similar (in terms
of leading to similar sounding equalized speech) to the one
in Fig. 1(a) always exists for different systems, and it always
retains the above `2-norm characteristic. Therefore, we pro-
pose the following criterion for selecting a solution that will
result in improved perceptual quality of the speech: among
the multiple solutions obtained by solving the generalized
eigenvalue problem (11), we choose the one which results in
the minimum `2-norm EIR. In the remainder of this work,
when CS equalization system is mentioned, it always refers to
the one selected with the above criterion.

IV. RELAXED MULTICHANNEL LEAST-SQUARES METHOD
FOR CHANNEL SHORTENING

In this Section, an alternative approach to CS is presented.
We propose to achieve CS by minimizing the following cost
function

J = ‖W(Hg − d)‖22, (15)

where W = diag{w} with

w = [1 . . . 1︸ ︷︷ ︸
τ

1 0 . . . 0︸ ︷︷ ︸
Lw

1 . . . 1]T(L+Li−1)×1. (16)

The first weight in the window area in w is set to 1 so that the
trivial solution can be avoided. Since by using the weighting
function w the minimization in the window area is relaxed,
it is called relaxed multichannel least-squares (RMCLS). The
solution obtained from

g = (WH)+Wd (17)

is used as the equalization system, where {·}+ denotes Moore-
Penrose pseudo-inverse [17]. This solution is the minimum `2-
norm solution among all possible solutions minimizing (15)
or maximizing the quotient in (1), and is also in the solution
space of (1).

The EIR given by the RMCLS is shown in Fig. 1(c).
It can be seen that in the window area, it also shows a
decaying pattern. In informal listening tests, the sound of
speech resulting from RMCLS is thinner than the selected CS
equalization system, but is warmer and preferred to the other
CS solutions.

V. EQUALIZATION IN THE PRESENCE OF CHANNEL
ESTIMATION ERROR

In practice, we never know the true RIRs and equalization
systems can only be computed based on the estimates of the
RIRs. Since the acoustic channel estimates always include
errors, the equalization system computed from the estimates
might not be able to equalize the true system. In this Section,
we show the performance of MINT, CS, and RMCLS in the
presence of the error by a simulation example. The 2-channel
system used above is employed as the true system and is
estimated using the system identification method described in
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Fig. 2. The EDC of h1, and the EDCs of the EIRs obtained from MINT,
CS, and RMCLS in the presence of channel estimation error. Note that in the
absences of estimation errors, the EDC for MINT equals −∞ dB after the
first tap, and the EDCs for CS and RMCLS equal −∞ dB after 0.05 s.

[18, pp. 90-94], which is a supervised system identification
method. In this example, the normalized level of the error,
(‖h − ĥ‖22)/‖h‖22, is −33 dB, where ĥ is the estimate of h.
The energy decay curves (EDCs) [16] of the EIRs are shown
in Fig. 2. It can be seen that in the presence of estimation error,
the MINT totally fails to equalize the acoustic system. For CS
equalization system, the part of the EDC before 0.2 s is below
the EDC of h1. However, the decay rate of the EDC after
0.05 s is smaller than that of h1, and a deleterious tail in the
EIR is introduced. On the other hand, the RMCLS equalization
system is superior in robustness to estimation error. It can be
seen that the RMCLS is more robust than the CS. The EDCs
for RMCLS shows more than 15 dB reduction compared with
h1 at any time after 0.05 s and the artificial tail is well below
a level that can be perceived by the listener.

VI. CONCLUSION

In this work, the use of channel shortening technique in
equalization of acoustic systems is investigated. A mathe-
matical link between MINT and CS is derived. Multiple
solutions to CS can be obtained and one MINT solution can
be expressed as a linear combination of the CS solutions. A
criterion for selecting a perceptually advantageous equalization
system from the multiple solutions to CS is provided. The
results of our informal listening tests showed that equalization
using the solution corresponding to the EIR with minimum
`2-norm is perceptually preferred. Extended listening tests
are required to reach scientifically significant conclusions.

RMCLS algorithm is presented, and the performance of CS
is compared with RMCLS. Simulations show that RMCLS
outperforms CS in robustness to channel estimation errors.
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