IMPROVING QUALITY PREDICTION ACCURACY OF P.563 FOR NOISE SUPPRESSION

L. Anders Ekman and W. Bastiaan Kleijn*

ACCESS Linnaeus Centre, Electrical Engineering
KTH - Royal Institute of Technology, 100 44 Stockholm, Sweden

ABSTRACT

We present a new method to map the features of P.563 to a single
mean opinion score (MOS) value using non-negative matrix factor-
ization (NMF). The method significantly improves the correlation
performance for the case of speech databases containing noise sup-
pression data, without affecting the performance for general speech
databases.

Index Terms— Speech quality assessment, P.563, PESQ, NMF,
noise suppression

1. INTRODUCTION

The perceived quality of speech is a highly subjective measure. To
evaluate the subjective quality of speech processing systems, such
as speech coders, noise suppressors, etc., time consuming and costly
subjective listening tests are performed [1]. In a typical absolute
category rating (ACR) test scenario [2], listeners (subjects) are asked
to grade speech utterances on a scale from one to five, where one is
bad and five is excellent.

The goal of objective quality measures is to mimic the behav-
ior of the subjective listeners and algorithmically create an estimate
of the speech quality. Objective quality assessment algorithms for
speech are divided into intrusive and non-intrusive methods. The
intrusive methods form the quality estimate using the clean test sig-
nal to compare to the processed, degraded signal. The non-intrusive
methods use only the degraded signal to create the estimate. The
current state-of-the-art methods in these two groups are the ITU-T
standards P.862 (PESQ — perceptual evaluation of speech quality) [3]
and P.563 [4], for intrusive and non-intrusive measurements, respec-
tively. This paper focuses on the non-intrusive quality assessment
methods, and in particular on P.563.

According to the standards, PESQ and P.563 are not validated
for use with noise suppression algorithms [3, 4]. P.563 has demon-
strated acceptable accuracy in transmission systems including echo
cancellers and noise reduction systems under single talk conditions,
but has not been validated for “effects and artifacts from isolated
noise reduction algorithms” [4]. A recent study showed rather low
performance of P.563 on noise suppression data [5]. Many current
speech coders use noise suppression algorithms and, thus, it is cru-
cial that the objective quality measures provides accurate estimates
under such conditions.

A great need exists for a reliable non-intrusive quality assess-
ment system for monitoring speech quality in telephone calls of live
networks. For monitoring the quality of service (QoS) in live net-
works, the intrusive methods can not be used since the clean ref-
erence signal is not available [1]. Heterogenous networks, includ-
ing voice communication over IP (VoIP) and wireless networks, cre-
ate widely varying speech and noise environments that are difficult
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to predict. When different communication networks interact, using
different technologies and equipment, complex distortions are intro-
duced into the speech signal [6].

In this paper, we propose a simplification of the quality mapping
function of P.563 that works well on speech processed with noise
suppression algorithms and provides similar performance for other
data. We replace P.563’s complex mapping from speech features to
objective score with an approach based on non-negative matrix fac-
torization (NMF). NMF is well suited for finding additive structures
in data, resulting in parts-based representations [7], often making
intuitive interpretations possible.

The remainder of this paper is organized as follows. In section
2, we briefly describe the P.563 algorithm and discuss some of its
shortcomings. In section 3 we describe the basics of NMF and our
new application of it to non-intrusive quality assessment. Section 4
shows our experimental setup and our simulation results. Section 5
contains our conclusion.

2. P.563 FEATURES AND MAPPING

The P.563 algorithm [4] computes a large set of speech features that
are mapped to an objective quality estimate. In total, there are 43
features, divided into five categories (number of features in parenthe-
sis): 1) mutes (4), ii) noise analysis (14), iii) unnatural speech (20),
iv) basic speech descriptors (3) and v) speech extract parameters (2).
The last group consists of outputs from a perceptual model that uses
an intrusive perceptual speech quality measurement between the de-
graded signal and a pseudo reference signal found from enhancing
the quality of the degraded signal.

The speech quality algorithm of P.563 consists of three main
steps. In the first step, a distortion class is selected based on a set of
features of the speech file under test. There are six different distor-
tion classes: low static SNR, mutes and interruptions, low segmental
SNR, unnatural voice — robotization, unnatural male voice and un-
natural female voice. The distortion class is selected based on a logic
scheme where, if the speech file is not considered belonging to class
i, it is checked if it belongs to class ¢ + 1, etc., see Figure 1.

The second step consists of computing a rough estimate of the
speech quality based on that particular distortion class. In this step,
different feature sets are used depending on the particular distortion
class. For any given distortion class, a weighted sum of 12 features
is calculated.

In the third step, a final quality estimate is computed as a
weighted sum of the output of step two and an additional 11 features
that are the same regardless of distortion class.

‘We have found that the logic scheme used to obtain the distortion
class of a speech file makes P.563 less robust to changes and unseen
distortion types. For any given test file, many features of speech are
not used to form the quality estimate because of the distortion class
selection. Furthermore, a small change in one of the features can
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Fig. 1. Logic scheme of P.563 for selecting distortion class. In each box, a certain criterion is checked and if it applies, the speech file is

classified as belonging to that box.

push the classifier into another class, which completely changes the
mapping function and the resulting objective score. We made a small
controlled experiment on 18 speech files that were on the boundary
between being classified as "low static SNR” and “mutes and inter-
ruptions”. The distortion is classified as the former if SNR<15 dB.
We picked speech files that were within 0.1 dB of the 15 dB thresh-
old and added or subtracted 0.1 dB from the estimated SNR to push
it over to the other side of the threshold. From this small change
in the SNR feature, the objective quality estimate changed by 0.36
MOS on average and the largest change was above 0.6. Thus, the
quality estimate mapping of P.563 is very sensitive to small changes
in individual features, which has a negative impact on robustness.

3. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization is a method of approximate factor-
ization of matrices with only non-negative entries. NMF (introduced
as positive matrix factorization in [8]) introduces non-negativity con-
straints on all entries of the factorizing matrices. NMF has proven
to be a powerful tool in a wide variety of applications, e.g., in find-
ing the parts-based representation of images and in finding semantic
features in text documents [7]. The non-negativity constraints result
in basis vectors of additive structures in data, creating sparse rep-
resentations that are interpretable when the input data has physical
meaning.

In our application to quality assessment, we use NMF for finding
the structures in the data that quantifies degradations in speech qual-
ity. The main competitor to NMF for finding structures in data for
our application is principal component analysis (PCA). The use of
NMEF, when compared to PCA, gives a clear additive relationship for
the degradation. In PCA, the constraint that the basis vectors must be
orthogonal results in a representation of the original data that gen-
erally involves cancellations between positive and negative values.
Also, the estimated objective score would consist of both adding and
subtracting basis vectors, and thus the individual basis vectors would
not represent a clear direction in terms of quality degradation. The
non-negativity constraint of NMF leads to a clear interpretation of
additive distortion structures in the feature space. Speech files for
which the weighted sum of the basis vectors point in approximately
the same direction also contain roughly the same type of perceived
distortion.

3.1. NMF algorithm
Given a non-negative n X m matrix V' that consists of m observation
column vectors of dimension n, the non-negative matrix factoriza-
tion results in the approximation
V~WH, (€))
where the factorizing matrices W and H also are non-negative. The
n X r matrix W consists of r basis vectors and the r X m matrix
H is the data represented in the new basis. The quality of the fac-
torization approximation of (1) is determined with a cost function.
Lee and Seung [9] use two different cost functions: the square of

the Euclidian distance and a measure similar to the Kullback-Leibler
divergence. In this paper, we use the square of the Euclidian dis-
tance, ||V — W H]||?, since we found that this measure gives better
results for our application. For this distortion criterion, [9] provides
multiplicative update rules that guarantee a monotonic convergence
towards a local optimum.

Initializing the W and H matrices using PCA [10] has proven to
give good results for our application and is therefore used in this pa-
per. For initializing the NMF matrices, PCA projects the data onto
a lower dimensional linear space (to match the dimension r of the
NMF matrices), such that the variance of the projected data is max-
imized. This means that the PCA finds the directions of highest en-
ergy in the data space, which has proven to be a good starting point
for the NMF. In our experiments, we have found that the results from
using PCA initialization are similar to the results of the best NMF
solutions from a large set of randomized initializations.

We have found that our application benefits from sparseness
constraints. Hoyer [11] presents a method to explicitly control the
degree of sparseness in the solution by defining a sparseness mea-
sure and incorporating it into the NMF algorithm. The sparseness
measure S is defined on the columns of W and on the rows of H by
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The measure evaluates to unity for vectors that contain only a single
non-zero component, and takes the value zero for vectors where all
components are equal. A sparse W means that the basis vectors
are sparse, so that few structural properties of the data are captured
in each basis vector. A sparse H indicates that each data vector is
reconstructed from only a few basis vectors.

3.2. NMF applied to features of P.563
We propose a system for quality assessment using NMF with the
speech features of P.563. The speech features and subjective score of
each utterance are grouped together to form the non-negative n X m
matrix V', which corresponds to the feature vectors versus the ob-
servation index. The first row of V' is selected to be 5 — @ for the
database, where () denotes the subjective MOS. The first row of W
corresponds to degradation in MOS, and the basis vectors scale with
quality degradation. The addition of basis vectors to form a cer-
tain feature vector corresponds to adding distortions together, and
the first entry of the basis vectors indicate how severe the impact of
that particular basis vector is on the quality. Basis vectors with high
values in the first entry represent structures that have a strong nega-
tive impact on speech quality. The basis vectors with low values in
the first entry have low impact on the speech quality. These vectors
characterize structure that does not affect speech quality.

To create a quality estimate for a new speech utterance, we must
rely on the feature vector without its first entry, since the subjective



score is not known. Let v denote the feature vector (dimension n— 1)
of the new utterance. We need to infer the hidden variables in h so
that .

v~ Wh, “)

where the (n—1) X r matrix W is the lower n— 1 rows of W. We find

the h that minimizes || — W h||? under the non-negativity constraint
h > 0 using the method of Lagrange multipliers. Given the hidden
variable vector h, which is full-size (r x 1), the best approximation
of the complete feature vector v is

o =Wh, )

and the first entry of 0 gives us the quality estimate for the utterance.

A large majority of the features of P.563 are non-negative. For
the features that have negative entries, we have made small adjust-
ments so that they fulfill the non-negativity constraint. Furthermore,
the feature values f are linearly mapped from [min( f), max(f)] to
the unit interval [0, 1], so that each feature receives roughly the same
importance in the cost criterion of the NMF.

4. SIMULATION

We extracted the features of P.563 for a set of databases as training
data, comprising the data matrix V' in (1). These training databases
are seven databases from P Supplement 23 [12], experiments 1 and
3, consisting of speech processed with speech coders G.711, G.726,
G.728, G.729, GSM-FR, IS-54 with and without bit errors and frame
erasures and with and without background noise. The P Supplement
23 databases composed parts of the training data used in the develop-
ment of P.563 [6]. Our training data further consists of two databases
containing speech in background noise (car and babble noise) pro-
cessed with the AMR-NB codec and three different noise suppres-
sion algorithms developed at Ericsson. The training data set consists
of in total 388 conditions and 2672 processed speech files. For our
NMF mapping, we used the parameters » = 32, S,, = 0.38, and a
relaxed sparseness constraint on /, as described in section 3. We ap-
plied the NMF algorithm and the resulting basis vectors W formed
our trained quality assessment model.

The performance of the objective quality assessment methods is
measured by the correlation coefficient R (also known as Pearson’s
correlation coefficient) and the root mean squared error (RMSE) ¢,
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where Q; denotes the individual subjective scores, 1i¢ is the average
subjective score, /N is the number of samples, and corresponding
variables for the objective scores are denoted with Q The corre-
lation coefficient and RMSE are measured on a per-condition ba-
sis. The subjective and objective scores are first averaged for each
test condition (e.g., type of speech codec, data rate, degree of noise,
etc.) of the speech database, and then the correlation coefficient and
RMSE are computed. To account for differences between databases
and the fact that identical distortions can give rise to different subjec-
tive quality scores in different studies, we follow the standard pro-
cedure to use a monotonic third order polynomial mapping from ob-
jective score onto the subjective score for each individual database
[3,4].

NMF P.563 PESQ
Database R e R € R €
NS 1 0.89 033 | 0.71 0.51 | 098 0.15
NS 2 095 023|071 051|094 025
NS 3 093 027 | 065 0.56 | 093 0.28
Average 092 028 | 0.69 053|095 023

Table 1. Validation data. Correlation coefficients and RMSE for
P.563 and for our proposed NMF mapping with the features of P.563.
The performance of PESQ is also shown as reference. The values are
after averaging over conditions and using a monotonic third order
polynomial fit from subjective to objective score.

To validate the performance, we used three unseen databases as
validation set. The validation data set consists of in total 78 condi-
tions in 1560 processed speech files, comprising of speech degraded
by car noise (NS 1), street noise (NS 2) and babble noise (NS 3) pro-
cessed by the AMR-NB codec with and without noise suppression
algorithms. The approach described by (4)-(5) was applied to create
the quality estimates for all speech files in our validation data set.

Figure 2 shows a scatter plot of all conditions of the validation
database set. The mapping of P.563 has problems with the quality
estimates for these databases. The correlation coefficient and RMSE
for the P.563 mapping and using our NMF mapping are shown in Ta-
ble 1. It is seen that our mapping outperforms the original mapping
of P.563 for these noise suppression databases. The simple yet pow-
erful mapping of NMF finds the structures in the feature space that
correspond to degradations in quality and quantifies them, giving a
certain degree of degradation. The sparseness constraint parameter
choice of S,, = 0.38 gives the best result in terms of average cor-
relation coefficient for the NS databases, but parameter values in the
range 0.35-0.45 work well, with average correlation coefficients al-
ways above 0.88. We note the fact that P.563 was not trained using
noise suppression data, and so it has an inherent disadvantage over
our proposed method in these experiments. We do not claim that our
method necessarily would outperform P.563 if also P.563 were to be
trained on databases containing noise suppression data but the NMF
approach provides a more intuitive and simpler structure.

The sensitivity of our method for small changes in a single fea-
ture was investigated through the same experiment as described in
the final paragraph of section 2. A small change in the SNR fea-
ture resulted in an average change of 0.14 in the objective quality
estimate (compared to 0.36 for P.563), indicating that our method
is more robust to small changes in individual features. Our method
also works well in the case of general speech and distortions, shown
by Table 2. The table shows the performance of our NMF approach
and P.563 over the part of the training database that does not con-
tain noise suppression data. The NMF mapping approach shows
equivalent performance as P.563 on the P supplement 23 training
databases: Rnwvr = 0.87 versus Rp.s63 = 0.88 averaged over the
seven databases. Note that these databases also were used in the
training of P.563 [6].

Table 1 shows also the results from PESQ as reference. PESQ
performs well for our noise suppression databases, and similar trends
have been reported previously, e.g., in [13].

5. CONCLUSION

We have presented a new method to create a mapping from the fea-
tures of P.563 to a single objective quality score using non-negative
matrix factorization. The power of NMF lies in its ability to extract
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Fig. 2. Scatter plot of the subjective versus objective score for the three validation databases. The values are averaged per condition and a
third order monotonic polynomial was applied. The three different markers indicate the three different databases in the validation data set.

NMF P.563 PESQ
Database R € R € R €
P23explA | 0.89 034 | 0.89 034 | 094 0.25
P23expID | 0.88 0.30 | 0.80 0.38 | 0.96 0.18
P23exp10 | 091 0.32 | 092 031 | 096 0.20
P23 exp3A | 0.85 0.36 | 0.87 0.34 | 090 0.29
P23exp3C | 0.82 047 | 0.85 044 | 097 0.22
P23 exp3D | 0.89 0.30 | 093 025 | 095 0.22
P23exp30 | 0.85 0.38 | 091 030 | 093 0.26
Average 0.87 035 | 0.8 034 | 095 0.23

Table 2. Training data. Correlation coefficients and RMSE for
P.563 and for our proposed NMF mapping on the P Supplement 23
database set used for training. The performance of PESQ is also
shown as reference. The P Supplement 23 databases contain speech
in French (A), Italian (C), Japanese (D) and American English (O).
The values are after averaging over conditions and using a mono-
tonic third order polynomial fit from subjective to objective score.

the larger features from speech that correspond to a certain type of
degradation in quality, and to grade how severe the degradation is.
Our method has a straightforward algorithmic structure, and it out-
performs the mapping of P.563 in the databases containing speech
processed with noise suppression systems. It also shows equivalent
performance for general speech data. This indicates that the mapping
of P.563 is the weak part of the standard, rather than the selected set
of features.
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