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ABSTRACT
This paper proposes a new dereverberation method that works with
incremental processing. A major problem here is how to estimate pa-
rameters of the observation process reliably when only a very short
observation is available, for example, at the beginning of each human
utterance. For this purpose, the prior knowledge of the room acous-
tics is incorporated into the proposed method by emplying the prior
probability density function representation. The proposed method
integrates the prior knowledge and the information obtained from the
observed signal based on the Bayes’ rule, and achieves incremental
dereverberation effectively.

Index Terms— Dereverberation, Room acoustics, Statistical
signal processing, Incremental estimation, Speech enhancement

1. INTRODUCTION

Speech signals captured by distant microphones in an enclosed space
will inevitably contain reverberant components because of reflec-
tions from the walls, the floor or the ceiling. These reverberant
components have a detrimental effect on the quality of the signal
and seriously degrade many applications including automatic speech
recognition.

One way to overcome this problem is speech dereverberation,
where the goal is to estimate parameters of unknown observation
process, and to recover the original quality of the speech signals
based on the estimated parameters [1, 2, 3]. It has been shown that
the maximum likelihood (ML) estimation approach with a model
of time-varying speech characteristics and that of the room acoustics
represented by long-term autoregressive (AR) coefficients is promis-
ing for achieving effective dereverberation based only on a few sec-
onds of observation [1]. In addition, a method has been proposed
for implementing this speech dereverberation approach in the STFT
domain in a computationally very efficient manner [4].

Although effective and efficient dereverberation methods have
been developed as noted above, they only work with batch process-
ing. They require the entire observed signal (or at least more than
1 sec observation) to be available in advance if we are to estimate
the parameters of the observation process effectively. The derever-
beration process may degrade the quality of a short observed signal.
Therefore, we cannot use such methods for real time applications,
for which the dereverberation needs to work incrementally from the
beginning of each human utterance with very little algorithmic delay.

The goal of this paper is to develop a new dereverberation
method that works with incremental processing. Here we assume
that the beginning of each human utterance can be detected by a
technique such as voice activity detection [5]. Then, the main prob-
lem of this task is how to estimate the parameters of the observation

process reliably when only a very short observation is available. For
this purpose, we propose a way of incorporating the prior proba-
bility density function (pdf) of the AR coefficients that represents
the room acoustics into the proposed method. The prior pdf enables
the proposed method to estimate the AR coefficients by means of
the posterior pdf reliably even with little observation, and thus to
achieve effective dereverberation with incremental processing. Note
that such a prior pdf can be blindly obtained from only a few sec-
onds of observation using existing dereverberation techniques, and
thus we do not need to measure room impulse responses (RIR) in
advance for the proposed method.

2. METHOD

Suppose a single speech signal is captured by a distant microphone,
where the speech signal is known to be active from a certain starting
time. Then, as discussed in [4], the observation process can be mod-
eled in the short time Fourier transform (STFT) domain by separate
long-term AR processes in individual frequency bins as1

xt,k = cH
k xt−1,k + st,k (1)

where t and k are frame and frequency indices of an STFT, H de-
notes the conjugate transposition of a matrix, a vector, or a scalar,
and xt,k and st,k are frequency bins of complex spectra correspond-
ing to the STFTs of the observed and clean speech signals, respec-
tively. ck and xt−1,k are vectors of length T that contain the long-
term AR coefficients of the room acoustics and a past observed sig-
nal sequence preceding a frame t, respectively, defined as

ck = [cH
1,k, cH

2,k, . . . , cH
T,k]H ,

xt−1,k = [xH
t−1,k, xH

t−2,k, . . . , xH
t−T,k]H .

In (1), rt,k = cH
k xt−1,k represents an STFT of the reverberant com-

ponent included in xt,k.

2.1. Basic dereverberation scheme

In our approach, we assume xt,k, st,k, rt,k and ct,k to be realizations
of their respective random variables. Hereafter, we suppose that a
time series of the observed signal, denoted by ξτ,k = {xt,k}t∈τ ,
at a frequency bin k within a certain time duration τ is available at
an estimation step in the incremental processing. Then, as a sub-
goal of the dereverberation, our method first estimates the posterior

1Although the inversion of a single channel RIR is not precisely repre-
sented by a causal linear filter in general, an STFT representation is empiri-
cally confirmed to mitigate this modeling error. In addition, the discussion in
this paper can be easily extended to multi-channel cases.



probability density function (pdf) of ck, denoted by pck(ck|ξτ,k),
for all k given the observed signal. With this pdf, we can decompose
the reverberation rt,k into two parts, namely its conditional mean
given ξτ,k and the deviation from the mean, respectively denoted by
r̄t,k and et,k, as

rt,k = r̄t,k + et,k, (2)
r̄t,k = c̄H

k xt−1,k, (3)

where c̄k = E{ck|ξτ,k} corresponds to the mean of pck(ck|ξτ,k).
We can also derive the conditional variance of et,k given ξτ,k as

E{|et,k|2|ξτ,k} = E{|r̄t,k − rt,k|2|ξτ,k}, (4)
= xH

t−1,kCkxt−1,k, (5)

where Ck = E{(ck − c̄k)(ck − c̄k)H |ξτ,k} corresponds to the
covariance matrix of pck (ck|ξτ,k).

The clean speech signal is then estimated based on the posterior
pdf of ck and (1) as follows. First, letting x̃t,k = xt,k − r̄t,k, the
observation process in (1) can be rewritten as

x̃t,k = st,k + et,k. (6)

In (6), et,k behaves like additive random noise with a mean of zero
and a covariance matrix E{|et,k|2|ξτ,k}. Therefore, we can esti-
mate the clean speech power spectrum based on (6) by subtracting
the power spectrum of et,k estimated as E{|et,k|2|ξτ,k} from that
of x̃t,k based on a technique such as spectral subtraction. For syn-
thesizing the speech signal by means of the waveform, the use of
overlap-add synthesis and substituting the phase of x̃t,k for that of
the dereverberated signal was shown to be effective experimentally.

In the following, we discuss how to estimate the conditional ex-
pectation values, c̄k in (3) and Ck in (5), by introducing prior pdfs
of the speech and room acoustics.

2.2. Posterior pdf estimation using prior information

We estimate the conditional expectation values, c̄k and Ck, as the
mean and covariance of the posterior pdf of ck, pck (ck|ξτ,k). The
pdf can be rewritten as

pck(ck|ξτ,k) =
pck (ck)pξτ,k(ξτ,k|ck)R

pck (ck)pξτ,k(ξτ,k|ck)dck
, (7)

where pck (ck) is the prior pdf of ck, and according to (1), we can
further rewrite pξτ,k(ξτ,k|ck) in the above equation as

pξτ,k(ξτ,k|ck) =
Y
t∈τ

pxt,k (xt,k|xt−1,k, ck),

=
Y
t∈τ

pst,k (st,k = xt,k − ck
Hxt−1,k), (8)

where pst,k (st,k) is the prior pdf of the speech signal at a frame t.
Based on (7) and (8), the posterior pdf pck(ck|ξτ,k) can be deter-
mined when pck (ck) and pst,k (st,k) are given.

We introduce definitions of the two prior pdfs in the following.

2.2.1. Prior pdf of room acoustics

We first assume that an RIR from the speaker to the microphone can
be viewed as a random variable that depends on, for example, the
speaker location and room temperature. Then, we assume that the
long-term AR coefficients can also be viewed as random variables

that have uncertainty derived from that of the RIR and the system
modeling errors in (1).

In this paper, the prior pdf of the long-term AR coefficients is
defined as

pck (ck) = N (ck; 0, Σck), (9)
where N (a; μ, Σ) denotes the pdf of a multivariate complex Gaus-
sian process a with a mean μ and a covariance matrix Σ. Because
the phase of an RIR varies greatly over different speaker and micro-
phone locations, we assume the mean of each AR coefficient to be
zero in the above pdf. On the other hand, we assume that Σck can be
determined or estimated in advance as Σck = E{ckck

H}. For the
sake of simplicity, we further assume that Σck is diagonal, namely

Σck = diag([γ2
1,k, . . . , γ2

T,k]), (10)

where γ2
t,k = E{|ct,k|2}, diag(a) is a diagonal matrix that contains

elements of a vector a as its diagonal components. In other words,
the above prior pdf is characterized solely by the power-time enve-
lope of the long-term AR coefficients. Because our preliminary ex-
periments showed that the power-time envelope of the long-term AR
coefficients in a room is relatively insensitive to differences in mi-
crophone and speaker locations, we assume that the above pdf can
be used as a general pdf for the long-term AR coefficients in a room.

We can determine Σck in many ways. For example, we can
measure several RIRs in a room with different measurement set-
tings, derive the long-term AR coefficients corresponding to respec-
tive settings, and calculate Σck according to (10). Σck can also be
determined simply by collecting certain sets of observed signals and
by deriving long-term AR coefficients from each of them based on
existing speech dereverberation algorithms such as [4]. As an alter-
native approach, Σck may be represented by a parametric model as
used in [2], and the envelope can be determined simply by control-
ling the reverberation time.

2.2.2. Prior pdfs of speech signals

We adopt the time-varying multivariate Gaussian source model
(TVGSM) as the prior pdfs of speech signals because it has been
shown to be very effective for a conventional speech dereverberation
method based on the long-term AR observation model [4]. With
TVGSM, the speech signal is modeled as

pst(st) = N (st; 0, Σst), (11)

where st = [(st,1)
H , . . . , (st,K)H ]H is a vector that contains fre-

quency bins of the clean speech over all frequency bins at a frame t,
and Σst = E{sts

H
t }. We further assume Σst is diagonal, namely,

Σst = diag([σ2
t,1, . . . , σ

2
t,K ]), (12)

where σ2
t,k = E{|st,k|2}. In other words, the above prior pdf is

characterized solely by the power spectrum of the clean speech sig-
nal.

Because the power spectrum of the clean speech signal is not
given in advance, we need to approximate it in some way with this
approach. One way to do this is to adopt the power spectrum of the
observed signal as the approximated value. This approach has also
been shown to be very effective with the conventional method. With
this approach, we may be able to refine the approximation further
based on an iterative estimation scheme by determining the power
spectrum based on the posterior pdf of the speech signal estimated
in the preceding estimation steps based on the posterior pdf of the
long-term AR coefficients.



2.2.3. Solution

Based on (8), (9), and (11), it is easily shown that (7) becomes a
multivariate complex Gaussian pdf as

pck (ck|ξτ,k) = N (ck; c̄k, Ck), (13)

c̄k = Ck

X
t∈τ

xt−1,kxH
t,k

σ2
t,k

, (14)

Ck =

 X
t∈τ

xt−1,kx
H
t−1,k

σ2
t,k

+ Σ−1
ck

!−1

. (15)

With these estimates, the dereverberation can be accomplished by
the method described in section 2.1.

2.3. Solution interpretation

According to the posterior pdf of ck derived above, the contribution
of the prior information on ck to the dereverberation is represented
by Σck in (15). Interestingly, this contribution becomes negligible
as the number of observed frames in τ becomes large. Then, the
conditional mean of the reverberation in (2), r̄t,k, given as (3), be-
comes identical to that of the conventional dereverberation method.
In addition, the conditional covariance of the deviation of rt,k from
the mean, E{|et,k|2|ξτ,k} represented as (5), approaches zero. This
means that the solution of the proposed method becomes identical
to the STFT domain filtering employed by the conventional method
when a sufficiently long observed signal is available.

In contrast, when we disregard the information obtained from
the observation, that is, when we set the summations over the time
frames in (14) and (15) at zero, the conditional mean and the covari-
ance, respectively, become

r̄t,k = 0,

E{|et,k|2|ξτ,k} =

TX
t′=1

γ2
t′,k|xt−t′,k|2,

where E{|et,k|2|ξτ,k} is calculated as a convolution between the
long-term AR coefficients and the past observed signal in the power
spectral domain. According to these estimates, the dereverberation
can be accomplished simply by reducing E{|et,k|2|ξτ,k} from the
observed signal in the power spectral domain. In this respect, the
proposed method has certain correspondences with existing derever-
beration methods that operate in the power spectral domain [2, 3, 6],
and thus provides a new estimation scheme for this approach.

As a consequence, the proposed method achieves the derever-
beration by a combination of filtering in the STFT domain and re-
verberation reduction in the power spectral domain.

2.4. Processing flow

We implemented the proposed method so that it dereverberates the
observed signal incrementally from the beginning of the signal with
certain algorithmic delay. The processing flow is summarized as
1. Set predetermined values at Σck for all k.
2. The observed signal is segmented into short time frames of
a fixed length, and transformed into the STFT domain. The
frames are then segmented into frame blocks of a fixed length.

3. Incrementally apply the following for each frame block.

(a) Set the initial values of Σst as σ2
t,k = |xt,k|2.
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Fig. 1. Average cepstral distortions for the observed signals (Obs)
and signals dereverberated by Baseline, Prop, Prior, and Posterior in
relation to the word order in the utterances.

(b) Repeat the following for all k

i. Update the summations in (14) and (15) by adding
terms corresponding to the current block, and ob-
tain pck(ck|ξτ,k) by (13).

ii. Update Σst based on the posterior pdf of the
speech signal, p(st,k|ξτ,k).

(c) Obtain x̃t,k = xt,k − r̄t,k, and estimate the clean
speech power spectrum using spectral subtraction.

(d) Synthesize the estimated speech signal in the current
block by using the waveform.

3. EXPERIMENTS

We evaluated the proposed method, which we refer to hereafter as
“Prop”, in comparison with the conventional method proposed in
[4]. Because the conventional method performed with batch pro-
cessing, it is referred to hereafter as “Baseline”. With Baseline, the
long-term AR coefficients were determined after a whole observed
signal had been obtained, and the dereverberation of the whole sig-
nal was performed based on these AR coefficients. In contrast, with
Prop, the posterior pdf of the long-term AR coefficients were es-
timated at each time block using the signals obtained by the time
block, and the dereverberation of the block was performed based
on this pdf. Therefore, the results obtained with Baseline are dealt
with as the desired performance with incremental processing in this
paper. Furthermore, we also tested the behavior of Prop in two dif-
ferent settings to examine the effect of the prior information. In one
setting, Prop was performed without using any prior information on
the room acoustics, that is, with Σ−1

ck
in (15) set at zero. This setting

is referred to as “Posterior.” In the other setting, Prop was performed
only with prior information, that is, the summation terms in (14) and
(15) were both set at zero. This setting is referred to as “Prior.” Prop,
Posterior, and Prior were all performed with incremental processing.

To test the effectiveness of each method, we prepared five utter-
ances by two speakers (a male and a female, a total of ten utterances).
Each utterance was composed of a five-word sequence, where each
word was extracted from the ATR word utterance database. The ob-
served signals were synthesized by convolving each utterance with a
1-ch RIR measured in a reverberant room with a reverberation time
(RT60) of 0.5 sec. Dereverberation was performed for each utter-
ance, and the performance was evaluated in terms of the cepstral
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Fig. 2. Spectrograms of clean (top left), and reverberated (top right) signals, and signals dereverberated by Prior (middle left), Posterior
(middle right), Prop (bottom left), and Baseline (bottom right). Only first two words in a female utterance are shown in the figure.

distortion (CD) of the recovered signals. CD in dB is defined as

CD = (10/ ln 10)

vuut(β̂0 − β0)2 + 2
DX

k=1

(β̂k − βk)2,

where β̂k and βk are, respectively, the cepstral coefficients of the
speech signal being evaluated and the original clean speech signal,
and we adoptedD = 12. To reduce the effect of the early reflections
that remain in the dereverberated signals, we applied cepstral mean
normalization to both signals before calculating the CDs. Distortions
in the energy time pattern and spectral envelope were evaluated with
this measure. The sampling rate was set at 8 kHz. The analysis win-
dow size and the frame shift were set at 256 and 128, respectively.
The block size of the incremental processing was set at 16 frames
(= 256 ms). This corresponds to the period for updating the pos-
terior pdf of c̄k. To determine the prior pdf of the long-term AR
coefficients for Prop, or Σck , we first applied Baseline to a female
utterance convolved with an RIR that was measured at a different
location in the same room, and set Σck based on (10) using the ob-
tained AR coefficients. The order of the long-term AR process was
set at 24 for each frequency bin. The iteration number for step 3-(b)
was set at 3.

Figure 1 plots the average CDs of the observed signals, and those
of the signals dereverberated by Baseline, Prop, Prior, and Posterior.
The average CDs were calculated separately for the first to the fifth
words over different utterances, and plotted according to the word
order. The figure shows that Baseline was the best at reducing the
average CDs. In contrast, Prop and Posterior were worse for the first
words in the utterances than Baseline, but their performance quickly
improved for the following words and approached that of Baseline.
When comparing Prop and Posterior, Prop improved the quality of
the first words much better than Posterior. Prior also reduced the
average CDs stably from the beginning, but the improvement was
relatively small. These results show that the prior information on the
room acoustics enabled Prop to dereverberate utterances from their
beginning with incremental processing and little algorithmic delay.

Figure 2 shows spectrograms of speech signals obtained before
and after dereverberation. They clearly demonstrate that Prior re-
duced the reverberation energy effectively from the beginning of the

utterance while Posterior quickly improved the dereverberation per-
formance for the second word in the utterance. In contrast, Prop took
effective advantage of these two methods, Prior and Posterior, for the
incremental processing.

4. CONCLUSION

This paper described a way of incorporating the prior pdf of the long-
term AR coefficients that characterizes a general acoustic property of
a room into the proposed method to achieve speech dereverberation
based on incremental processing with little algorithmic delay. The
proposed method integrates the prior information and the informa-
tion obtained from the observed signals based on the Bayes’ rule.
The experiments showed that the proposed method can effectively
dereverberate the word sequence incrementally from its beginning
without degrading the quality of the speech signal under a 0.5 sec
reverberation time (RT60) condition.
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