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ABSTRACT
In this paper a noise suppression method with adaptive adjustment
of the maximum allowed signal attenuation is presented. In contrast
to conventional noise reduction schemes, where often a so-called
spectral floor is specified, we start with the specification of a de-
sired residual background noise in terms of its power spectral den-
sity (PSD). Then the maximum filter attenuation of the proposed
method is dynamically adjusted such that the PSD of the residual
noise matches that of the desired background noise. Since a straight
forward approach for achieving this objective results in an unnatural
residual noise signal, three extensions that overcome these difficul-
ties are presented. These new methods, which are particularly suit-
able as post-processing for beamformers, help to overcome resid-
ual non-stationary noise components. Furthermore, residual noise
shaping can be utilized. Evaluations have shown that highly non-
stationary noises are suppressed considerably without degrading the
speech quality.

Index Terms— Speech enhancement, noise suppression, maxi-
mum attenuation, non-stationary noise, beamforming

1. INTRODUCTION

In several applications such as hands-free telephony or speech-dialog
systems the recording of a speech signal takes place in a noisy envi-
ronment. For systems, e.g., installed in cars, used in sidewalk cafes
or in train stations, the local speech is often corrupted by background
noise. Therefore, noise suppression algorithms are used to attenuate
the distorted components while keeping the speech signal as natural
as possible.

In literature a wide variety of different noise reduction character-
istics, such as the approaches proposed by Ephraim/Malah [2, 3],
Wiener filtering in its direct or recursive way [5], or the method pro-
posed by Lotter [6] (to mention just a few), exist. These approaches
differ mainly in their optimization criteria (e.g. MMSE or MAP) and
in the statistical models which are used for the speech and the noise
signal, respectively. One major limitation that exists in common
noise suppression techniques is that these schemes are usually un-
able to attenuate non-stationary noise components. The interfering
sound fields in a cafeteria or a station for instance can be considered
to be non-stationary. In automotive applications the non-stationary
disturbances result, e.g., from overtaking cars or from cars on the
opposite lane. Often single-channel speech enhancement methods
classify abrupt increases of disturbance level as speech onsets – as
a consequence the filter “opens” and non-stationary noise bursts are
not attenuated at all.

A large improvement can be achieved by using more than one
microphone in conjunction with beamforming schemes followed by

a post-filter that exploits spatial information (see, e.g., [1] for an
overview). However, even if multi-channel approaches clearly im-
prove the behavior for non-stationary noise, the residual background
noise usually still follows mainly the original noise – attenuated by
a fixed or at most by a slowly changing maximum attenuation (see,
e.g., [7]) of about 6 to 20 dB. The residual non-stationary noise, after
applying a maximum allowed attenuation, is often still annoying.

The methods that will be presented in the following utilize an
adaptive adjustment of the maximum attenuation. This makes it pos-
sible to transform a highly non-stationary residual noise into a sta-
tionary one or in a better sounding type of disturbance which follows
the spectral behavior of an a priori specified residual noise spectrum.
Also residual noise shaping to enhance speech recognition systems
can be applied with that methods. The contribution is organized as
follows: first the main idea of classical noise suppression will be pre-
sented shortly, followed by the derivation of four proposed methods.
The paper concludes with simulation results and a summary.

2. CONVENTIONAL NOISE SUPPRESSION RULES

In the following it is assumed that the microphone signal y(n) con-
sists of speech s(n) and of undesired background noise components
b(n):

y(n) = s(n) + b(n) . (1)

The signal y(n) might also be regarded as the output of a multi-
channel preprocessing, e.g. a beamformer. For signal enhancement
often the noisy speech signal is first split up into overlapping block
segments of appropriate size. The segmentation can be described by
extracting the M last recent samples of the input signal and combin-
ing them to a vector. Typically successive segments are subsampled
by a factor r = M/4 or r = M/2. In order to separate the desired
and undesired signal components each signal block is multiplied by
a window function hk and transformed into the frequency domain
using a filterbank or a DFT :

Y
(
ejΩµ, n

)
=

M−1∑

k=0

y(nr − k) hk e−jΩµk . (2)

The frequency supporting points Ωµ can be distributed equidis-
tantly over the normalized frequency range as Ωµ = 2πµ/M with
µ ∈ {0, . . . , M − 1}. Depending on the current SNR in each fre-
quency subband µ an attenuation factor is computed using a noise
suppression characteristic. If, e.g., the recursive Wiener approach [5]
is chosen the corresponding weights are determined as follows:



G
(
ejΩµ, n

)
= max

{
Gmin, 1 − β

(
ejΩµ, n

) Ŝbb(Ωµ, n)∣∣Y (ejΩµ, n)
∣∣2

}
,

with β
(
ejΩµ, n

)
= min

{
βmax,

1

G
(
ejΩµ, n − 1

)
}

. (3)

The quantities Gmin and βmax are the maximum filter attenua-
tion and the maximum over-estimation factor, respectively. In or-
der to estimate the PSD of the noise Ŝbb(Ωµ, n) simply first-order
IIR smoothing can be applied during speech pauses. An enhanced
method to estimate Ŝbb(Ωµ, n) for multi-channel applications can
be found, e.g., in [8]. This method, which is optimized in the MAP
sense, exploits spatial information using the output signals of a GSC-
type adaptive beamformer and of a blocking matrix.

Finally, the weighting factors are applied to the noisy input short-
term spectrum (STS) to get the enhanced output STS:

Ŝ
(
ejΩµ, n

)
= Y

(
ejΩµ, n

)
G
(
ejΩµ, n

)
. (4)

The synthesized output signal ŝ(n) is computed by performing first
an inverse DFT to the weighted STS Ŝ(ejΩµ, n) followed by appro-
priate windowing and adding of the overlapping output frames.

With multi-channel approaches one can additionally increase the
SNR of the incoming signal and also the robustness of the back-
ground noise estimation can be improved considerably by exploiting
spatial information. However, due to the limitation inserted either
directly in current filter characteristic (Gmin in Eq. 3) or within the
SNR estimation, the output spectrum follows in noise-only periods
the (attenuated) spectrum of the disturbance:

Ŝ
(
ejΩµ, n

)∣∣
Noise-only periods

= Y
(
ejΩµ, n

)
Gmin . (5)

3. PROPOSED NOISE SUPPRESSION METHOD

In contrast to conventional noise suppression algorithms the herein
proposed method utilizes a predefined PSD of a residual background
noise Sbb,des(Ωµ). The maximum attenuations for the filter coeffi-
cients are adjusted such that the current residual noise matches with
Sbb,des(Ωµ) (at least in terms of the spectral envelope, not necessar-
ily in terms of the probability densities of the individual subbands).
However, the a priori specified residual noise Sbb,des(Ωµ) can be,
e.g., a more comfortable and better sounding type of disturbance
compared to the original one.

Various types of acoustical noises in human environments like car,
cafeteria, or station noise are of interest in noise control applications.
Starting with car noise, the main components are engine, wind, and
rolling noise. Their spectral behavior varies depending on the type
of vehicle, the current speed, and the surface of the road. In Fig. 1
the estimated PSDs of three different background noises are shown.
The signals were measured in a Mercedes, a BMW, and a Porsche
at a speed of 160 km/h. The recordings were performed using the
integrated hands-free microphones of the individual cars (including
individually optimized equalizations, mainly noticeable at low fre-
quencies). Due to the different shapes depicted in Fig. 1 a residual
noise shaping can be performed utilizing a common desired residual
background noise for all car types. The specified residual noise can
be, e.g., extracted from a well sounding noise of a specific car. Fur-
ther on, noise shaping can also be employed, for instance, to utilize
a type of residual noise like it was previously used to train a speech
recognition system. Thereby, it will be guaranteed that the recog-
nizer will “see” the same residual noise for training as well as for
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Fig. 1. Mean PSDs of background noises measured in different ve-
hicles at a speed of 160 km/h.

application mode. This helps reducing the amount of memory used
for modeling noise components.

Noise shaping can be applied as well for high non-stationary
noises measured, e.g., in a cafeteria or in a station environment.
The new methods have the capability to transform the highly non-
stationary residual noise into a stationary one which follows the
spectral behavior of an a priori specified residual noise spectrum.

For the derivation of the new methods it is assumed that a desired
shape of the noise PSD Sbb,des(Ωµ) is already found and specified.
During initialization a real-valued desired residual background noise
spectrum is obtained from Sbb,des(Ωµ) at frame index n = 0:

Bdes
(
ejΩµ, 0

)
=
√

Sbb,des(Ωµ) . (6)

This desired noise spectrum Bdes(e
jΩµ, n) is now continuously ad-

justed to the current background noise b(n), respectively its esti-
mated PSD. If the current frame is classified as a noise-only one the
desired noise spectrum is corrected – during speech activity it is re-
tained unchanged:

Bdes
(
ejΩµ, n

)
=

{
∆B(n) Bdes

(
ejΩµ, n−1

)
, G(n) < G0 ,

Bdes
(
ejΩµ, n − 1

)
, else .

(7)

The condition G(n) < G0 is a simplified speech activity detector.
G(n) is defined as the previous mean of the estimated attenuation
factors G

(
ejΩµ, n − 1

)
as:

G(n) =
1

M

M−1∑

µ=0

G
(
ejΩµ, n − 1

)
, (8)

whereas G0 is a predetermined threshold that can be set, e.g., to
−6 dB. Depending on the estimated background noise Ŝbb(Ωµ, n)
in a certain frequency range between µ0 and µ1, the correction factor
∆B(n) is determined as follows:

∆B(n)=





∆inc, if
µ1∑

µ=µ0

B2

des
(
ejΩµ, n − 1

)

< G̃2

min

µ1∑
µ=µ0

Ŝbb(Ωµ, n) ,

∆dec, else,

(9)

with 0 ≪ ∆dec < 1 < ∆inc ≪ ∞ . (10)

This means that the PSD of the desired background noise keeps its
initial shape but follows the power of the real background noise
(measured in a small frequency range [Ωµ0

, Ωµ1
]). With the pa-

rameter G̃min one can specify the desired noise attenuation in this
range. Evaluations have shown, that the following settings are par-
ticularly favorable for a setup with a sampling rate fs = 11025 Hz
and a block overlap of 75 %:

∆dec = 0.98 and ∆inc = 1.02 . (11)



Furthermore, a reasonable frequency range for Eq. 9 is:

Ωµ
0
≃ 400 Hz and Ωµ

1
≃ 700 Hz . (12)

Due to the slow multiplicative correction fast fluctuations of the true
and of the estimated background noise Ŝbb(Ωµ, n) will only influ-
ence marginally the desired residual noise Bdes(e

jΩµ, n).
In the following we will present four different approaches. All

of them can be regarded as a frequency-selective, time-variant ver-
sion of the limitation for the attenuation factors in Eq. 3. Here the
parameter Gmin is replaced by Gmin,i(e

jΩµ, n), resulting in

G
(
ejΩµ, n

)
= (13)

max

{
Gmin,i

(
ejΩµ, n

)
, 1 − β

(
ejΩµ, n

) Ŝbb(Ωµ, n)∣∣Y
(
ejΩµ, n

)∣∣2

}
,

with i ∈ {1, 2, 3, 4} representing one of the four approaches.
A straight forward approach would be to compute the gain factors

according to Eq. 3 without any limitation (Gmin = 0) first, apply
them to the subband signals, and check afterwards if the output sig-
nal amplitudes are smaller than the desired noise amplitudes. If this
is detected the amplitudes should be reset to Bdes(e

jΩµ, n) (using
the phases of the input signals). An equivalent way to achieve this is
to set the adaptive maximum attenuations in Eq. 13 as:

Gmin,1

(
ejΩµ, n

)
= min

{
G0,

Bdes
(
ejΩµ, n

)
∣∣Y
(
ejΩµ, n

)∣∣

}
. (14)

Due to the minimum operator at least a suppression limit of G0 will
be applied. If this is omitted a noise amplification might happen.
For G0 we suggest to use G0 = 0.5 resulting in a minimum attenua-
tion of about 6 dB. Simulations and measurements have shown, that
the residual noise of this approach sounds quite annoying due to a
very tonal characteristic. These artifacts are caused by the fact that
only slow variations of Bdes(e

jΩµ, n) are allowed in Eq. 7. Thus,
the amplitudes of the output subband signals are changing also very
slowly. In combination with quickly changing phases of the individ-
ual subbands a buzzy sounding residual noise is created. This can be
avoided by allowing some small variations of the output amplitudes.

This can be realized in a simple manner by recursive smoothing
of the results of our first approach according to:

Gmin,2

(
ejΩµ, n

)
= γ Gmin,2

(
ejΩµ, n − 1

)

+(1 − γ)Gmin,1

(
ejΩµ, n

)
. (15)

For the smoothing coefficient γ values can be chosen within the
range

0 ≤ γ < 1. (16)

A small value of γ will result in low variations of the predetermined
noise whereas a large value in higher fluctuations. The latter choice
leads to a more pleasant and natural sounding of the residual noise.
Several listening tests have shown that γ = 0.8 was a reasonable
choice for the setup described before. It has to be mentioned, how-
ever, that due to the smoothing the current adaptive maximum atten-
uation coefficients are not optimal anymore. Sometimes at highly
non-stationary noise scenarios, the current residual noise may not
match with the a priori specified desired noise. To overcome this,
the adaptive maximum attenuations from Eq. 14 are combined with
artificial fluctuation weights Gn(e

jΩµ, n) according to:

Gmin,3

(
ejΩµ, n

)
= Gmin,1

(
ejΩµ, n

)
Gn
(
ejΩµ, n

)
. (17)

Whereas the statistical properties of the random fluctuations should
be chosen as:

E
{

Gn
(
ejΩµ, n

)}
= 1.0 , (18)

Var
{

Gn
(
ejΩµ, n

)}
= 0.2... 0.4 . (19)

The last approach, which leads in our opinion to the most com-
fortable type of residual noise for automotive applications, consists
of an adaptive increment and decrement mechanism that takes the
previous attenuation coefficients into account (beside a fixed multi-
plicative correction):

Gmin,4

(
ejΩµ, n

)
(20)

=






γinc Gmin,4

(
ejΩµ, n − 1

)
+ γG G

(
ejΩµ, n − 1

)
,

if Bdes
(
ejΩµ, n

)
>Gmin,4

(
ejΩµ, n − 1

)∣∣Y
(
ejΩµ, n

)∣∣,

γdec Gmin,4

(
ejΩµ, n − 1

)
− γG G

(
ejΩµ, n − 1

)
,

else .

For the same setup that was already mentioned before the following
choices for the time constants were selected:

γinc = 1.05, γdec = 0.995, and γG = 0.1 . (21)

Please note that the maximum attenuation values Gmin,i(e
jΩµ, n)

can be applied also for other filter characteristics than the recursive
Wiener filter (described in Eq. 13). Furthermore, the authors suggest
to apply the methods as a post-processor for beamformers. Thus
spatial information can be exploited for a reliable classification of
noise versus desired signal. However, even two-channel approaches
are able to achieve such a classification with sufficient reliability.

4. EXPERIMENTAL RESULTS

The proposed methods for adjusting the maximum allowed attenu-
ation in noise suppression schemes can be applied for a variety of
speech applications. It can be used, e.g., as a post-processor at the
output of a beamformer to avoid residual non-stationary noise com-
ponents. To demonstrate the effect, time-frequency analyses of a
noisy speech signal are depicted in Fig. 2 measured in a sidewalk
cafe at an SNR = 3 dB. A uniform linear array with 4.2 cm spacing
and 4 channels has been employed. In the upper diagram the clean
speech signal is shown using a sampling frequency fs = 11025 Hz
and a subsampling factor r = 64. The microphone signals have
been generated using impulse responses and highly non-stationary
noise, which were actually measured in an acoustical environment of
a sidewalk cafe. The speaker was seated in broadside direction with
a distance of 1 meter to the microphone array. A microphone signal
(second channel of the array) is depicted in the second graph. The
analysis in the third diagram presents the output of a GSC-type adap-
tive beamformer [1] and a Wiener post-filter with fixed maximum
attenuation. As a compromise between speech distortion and noise
reduction a fixed maximum attenuation of Gmin = 15 dB has been
applied. A background noise estimate which has been derived for
spatial post-filtering (as described in [8]) was used in this scenario.
Due to a reliable background noise estimation almost all transient
noise components were classified correctly as noise. Although they
were not detected as speech no sufficient attenuation has been ap-
plied – the residual non-stationary noise components are still audible
and perturbing. As it is shown in the third diagram the residual noise
spectrum still follows the input spectrum. The analysis at the bottom
of Fig. 2 represents the enhanced output signal by applying the same
Wiener like post-filtering but now with the proposed adaptive max-
imum attenuations. An average shape extracted from a short part
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Fig. 2. Example of time-frequency analyses with input SNR=3 dB in
an acoustical environment of a sidewalk cafe.

of a sidewalk cafe background noise has been utilized as a desired
residual noise. The maximum allowed attenuations Gmin,3(e

jΩµ, n)

and a noise attenuation of G̃min = 15 dB (Eq. 9) have been used
for this scenario. It can be seen that the non-stationary noise compo-
nents have been removed completely. At the same time the speech
quality has not been affected. Evaluations at different SNRs with the
same setup have shown that non-stationary noise components can
be eliminated completely while speech distortions are almost kept
unchanged compared to the fixed maximum attenuation as shown
in Fig. 3. The distortion has been measured using the log-spectral
distance according to:

LSD =
10

L

N∑

n=0

√√√√
M/2∑

µ=0

Kµ,n

Kn

lg2

(
max

{
|S
(
ejΩµ, n

)
|2, δs

}

max
{
|Ŝ
(
ejΩµ, n

)
|2, δŝ

}
)

. (22)

Whereas |S(ejΩµ, n)|2 is the PSD of the clean speech and the lower
bound is defined as δs = 10−5 maxµ,n{|S(ejΩµ, n)|2}. The bi-
nary mask Kµ,n ∈ {0, 1} is used to select only components that
satisfy the condition: |S(ejΩµ, n)|2 ≥ δs. The corresponding nor-
malization is given by Kn = max{

∑
µ Kµ,n, 0.1}. The quantity

N represents the number of frames in the signal and L corresponds
to the number for which Kn ≥ 1.

Evaluations have also shown that short noise bursts or strong tonal
disturbances as they are often produced by cars can be removed al-
most completely by using the proposed method from Eq. 20 instead
of a fixed maximum attenuation (with two-channel processing). The
same is true for other transient signals such as they are produced by
indicator clicks or by the windshield wiper.

Furthermore, the last method (Eq. 20) has been evaluated with a
speech recognizer and a single-channel preprocessing with different
noise suppression characteristics. A Lombard [4] data base was uti-
lized consisting of a huge amount of speech signals at different SNR.
For the evaluation the recursive Wiener filter [5] and the character-
istics according to Ephraim/Malah [2, 3] and Lotter [6] have been
employed. The speech recognition system was trained individually
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Fig. 3. Measured log-spectral distance (LSD) for speech.
for all characteristics and for fixed and adaptive maximum attenua-
tion, respectively. The results have shown that the word accuracy can
be increased when using the adaptive maximum attenuation – by ap-
prox. 3% relative for Wiener and Ephraim/Malah and 4% for the Lot-
ter characteristic. Although the word accuracies have shown small
improvements, it should be mentioned that the proposed method has
still the capability for enhancing speech recognition in the future.
Due to a predefined residual noise spectrum, less model parameters
are needed for the classification of different noise types. The re-
duced number of model parameters for noise can advantageously be
exploited for enhancing the speech model.

5. CONCLUSIONS

A new method for noise suppression and its applications was pre-
sented. Unlike conventional noise suppression algorithms the pro-
posed methods utilize a desired residual background noise and the
maximum attenuation coefficients are determined adaptively. It was
shown that non-stationary noise components such as the ones pro-
duced in a sidewalk cafe or by passing or overtaking cars in automo-
tive hands-free systems can be suppressed considerably without de-
grading the speech quality. Furthermore, residual noise shaping can
be utilized – e.g. to transform an unpleasant sounding background
noise of a vehicle A into a more pleasant sounding one of a vehicle
B. The proposed methods are particularly suitable as post-processing
for beamformers. Moreover the new approaches can advantageously
be employed for enhancing speech recognition systems.
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