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ABSTRACT 

In this paper, we present some unique challenges of 

designing a robust and practical acoustic echo canceller 

(AEC) for personal computers (PC) and propose effective 

algorithms that meet these challenges. Specifically, the 

quality and robustness of our AEC is enhanced by 

selectively applying a glitch recovery process based on a 

novel feature that measures the quality of the alignment 

between the microphone and loudspeaker signals.  In 

addition, a multi-step clock drifting compensation method is 

applied to improve the quality of AEC in case of clock 

drifting. The effectiveness of the algorithms is demonstrated 

by a real-time AEC component running in a variety of 

operating environments.  

 

Index Terms— acoustic echo cancellation/canceller, 

software, clocking drifting, AEC, PC, VOIP 

1. INTRODUCTION 

Acoustic Echo Cancellation (AEC) is a digital signal 

processing technology which aims to remove the acoustic 

echo from a speaker phone in two-way or multi-way 

communication systems [1]. During the recent decade, the 

explosive growth of voice over IP (VOIP) applications calls 

for robust and reliable AEC running in software on a variety 

of PC operating systems. Although there has been extensive 

research on AEC and significant advances have been made, 

to date little effort has been paid to the unique software 

design challenges encountered on the PC platforms except 

for a few exceptions [2]-[4] where signal synchronization 

were briefly discussed. 

Figure 1 illustrates an example of one end of a typical 

VOIP application on a PC, which includes an audio capture 

path and an audio render path in two directions.  In the 

capture path, an analog to digital (A/D) converter converts 

the analog audio signal captured by microphone to digital 

samples continuously at a sampling rate 
smF .  The digital 

audio samples are saved in a capture buffer sample by 

sample and are retrieved in frame increments (denoted 

as ][im ). Finally, samples in ][im are processed and 

transmitted. In the render path, a similar process occurs 

involving discrete time signal ][is , the continuous time 

signal ][ts , at a sampling rate 
ssF .  

 
Figure 1.  Hands-free VOIP configuration. 

 

The capture and render buffers are necessary for practical 

purposes but they do introduces delay.  For example, a 

sample generated by the A/D converter will stay in capture 

buffer for a short while before it is read out.   

Typically, AEC assumes the room can be modeled as a 

finite duration linear plant. The echo e(t) is represented per 

the following relationship 
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where * denotes convolution, h(t) the room response, Te the 

length of the room response filter, and s(t) the loudspeaker 

signal. We assume our AEC uses a typical architecture, 

where adaptive filters, such as Normalized Least Mean 

Square (NLMS) adaptive filters [1], operate in the discrete 

Fourier transform (DFT) subbands to adaptively model the 

time-varying room response (see, e.g. [1]).  

In the literature it is commonly assumed that the 

discrete-time version of Equation (1) holds. However, due to 

the imperfection of the PC platform, e.g. the imprecision of 

the A/D and D/A and the limitations of the system software 

components, ][nm  and ][ns are far from ideally digitized 

versions of m(t) and s(t). If one does not take these factors 

into consideration, serious breakdown of AEC can happen, 

resulting in poor quality. In this paper, we consider these 

problems explicitly and demonstrate algorithms that can 

effectively alleviate these system “artifacts.”  

2. SIGNAL ALIGNMENT ISSUES  

Figure 2 shows the prediction timeline for both continuous 

and discrete time signals with the underlying assumption 

that s[t] and m[t] are sampled at a consistent sampling rate 

and synchronized. To fully illustrate the point of 

consistency, we introduce the concept of the “relative 



sample offset” (RSO, d[i]). Conceptually, the RSO can be 

understood as follows: 

1. Given a discrete-time microphone sample m[i], suppose 

we can find the physical time τ when m[i] was 

generated by the A/D converter  (Figure 1).   

2. According to Equation (1) and Figure 2, the echo at 

m(τ) is a function of the loudspeaker signal s(t) during 

the time interval  t = [τ-Te,τ] preceding  time τ.   

3. Next, let’s assume that we find the index j of 

loudspeaker signal such that s[j] is played back at time τ 

at the loudspeaker.  
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Figure 2. Time-line of prediction. 

 

In other words, we identify a loudspeaker sample s[j] 

that is rendered at the same time as the microphone sample 

m[i] is captured. We define the RSO as the difference of the 

indices, or d[i]=i-j. When the precise sampling rates 
smF and 

ssF  are known, d[i] should be an exact linear function of i, 

or j: 

CFFFiid smsssm +−= /)(][   (2) 

where C is an arbitrary constant depending on the starting 

point of the two sampling clocks. Under the ideal condition, 

we can always make 
smF and 

ssF  identical through re-

sampling, in which case d[i] reduces to a constant and m[i] 

and s[i] are said to be in “alignment”. In reality, however, 

such is rarely the case due to at least one of the following 

manifestations that we have encountered during our 

investigations: 

(1) Clock drifting: The microphone signal m[i] and 

loudspeaker signal s[i] generally are sampled by two 

different sampling clocks. The actual clock frequencies 

are usually slightly different and unknown even though 

their nominal frequencies are known to be the same. If 

the nominal frequency is used as is, m[i] and s[i] will 

eventually lose “alignment” over time. This 

phenomenon is commonly referred to as clock drifting.   

(2) Time-varying delay: As mentioned earlier, buffering 

introduces a delay in both capturing and playback paths.  

The delay is unfortunately not constant over time.  

(3) Noisy timing measurements: Modern audio hardware 

provides timing data in order to synchronize m[i] and 

s[i]. The information is always noisy, due to limited 

numerical precision, data transfer delay, multi-

threading, etc.  

(4) Missing samples/Glitch: The system may unpredictably 

lose some samples, typically referred to as a “glitch”. 

After a glitch, m[i] and s[i] will no longer be in 

alignment, even if they have been prior to that event.  

 

Considering these factors, we propose a modification of 

Equation (2) as a model for the RSO: 

CiwieRiid +++= ][][][   (3) 

where e[i] is zero-mean WGN with variance σ
2
  to model the 

noisy timestamps, w[i] is a sparse (i.e. w[i] = constant in 

most places) and random step function representing the 

discontinuities caused by the glitches, and R, typically a 

very small value, is the clock drifting rate. Note that the 

RSO can be any rational number, instead of integers only. 

It is clear to us now that unless compensated, the 

variability of RSO will break the basic linear prediction 

model that AEC relies on and often cause AEC to fail 

completely. Next, we will be introducing techniques that 

compensate the non-ideal RSO, seek to bring m[i] and s[i] 

into alignment and consequently improve the quality and the 

robustness of AEC substantially.  

3. GLITCH DETECTION AND RECOVERTY 

To handle glitches, our objectives are to detect where the 

glitches happen, bring signals into alignment and take 

necessary steps to recover quickly. In order to achieve these 

goals, we first need to estimate the parameters that 

characterize the RSO, i.e., clock drifting rate R and the 

variance of the observation noise σ
2
.  

3.1  Parameter estimation 

Generally speaking, estimating the parameters of Equation 

(3) jointly is a very hard problem. However, due to the 

sparseness of w[i], we propose a simplified, suboptimal 

solution that takes place in two steps. In the first step, we 

assume the local observation window doesn’t contain any 

glitches. With w[i] out of the picture and given N number of 

frames, we can estimate R and σ
2
 by means of the formal 

equations: 
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estimates are optimal in terms of the mean squared error, 

they should approach their true values, as N increases. 

However, in practice, it is not a good idea to let N increase 

unbounded. The clock drifting rate R may be slowly varying 

over time and observation noise may not be strictly 

stationary. Thus, we define an estimation window of several 



hundred seconds long and for simplicity reset the estimates 

at the end of the window. Practical experience shows that 
∧

R  

and 
∧

2σ  usually converges in several seconds. Furthermore, 

standard recursive least square formulations can be chosen 

for online estimation of these parameters, in which case the 

explicit windowing is no longer needed. 

3.2 Glitch Detection 

Based on our observations, glitches can be classified into 

two categories by the amount of time discontinuity the 

glitch introduces. To this end, we choose a threshold several 

times of 
∧

σ , the standard deviation of the RSO noise. Any 

discontinuity larger than the threshold is detected as a 

“large” glitch. Note that once a large glitch is detected, the 

adjacent RSO data will be discarded from parameter 

estimation. Although this doesn’t change the fact that the 

steps described in Section 3.1 is suboptimal, our 

experiments show the remaining small glitches don’t cause 

any serious problem.  

Small glitches present a challenge as the glitch size is 

indistinguishable from the range of RSO noise. We propose 

to apply a Move-Average (MA) filter to the RSO data ][id :  
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where L denotes the window size and is made proportional 

to 
∧

2σ in order to adapt to different noise conditions. If ][idMA
 

has a change larger than a predefined threshold within a 

certain time period, a small glitch is identified.  

To further enhance the glitch detection process, we 

make the detection adaptive to 
∧

2σ in three zones. First, when  
∧

2σ  is low, our AEC applies both large and small glitch 

detection.  Secondly, when  
∧

2σ  is within a medium range, 

we cease the process of small glitch detection, while 

continuing the process for large glitch detection. Finally, 

when  
∧

2σ  is too high, our AEC ceases to perform both large 

and small glitch detection processes.   

3.3  Fast Glitch Recovery 

After a glitch is detected, the AEC needs to re-align the two 

streams m[i] and s[i]. The exact mechanism of re-alignment 

will be covered in Section 4. In addition, our AEC stops 

updating the adaptive filter coefficients for all samples 

involved in the re-alignment until all samples involved are 

passed. We found this approach vastly improve AEC quality 

compared to the other two obvious choices: If the adaptive 

filter coefficients are reset, the AEC would take time to 

converge during which echo would likely be heard. On the 

other hand, if the coefficients are updated continuously, the 

adaptive filters could lose convergence due to the mis-

aligned signals.  

4. CLOCK DRIFTING COMPENSATION  

As mentioned earlier, when there is either clock drifting 

(CD) or a glitch, we need to compensate the time 

discontinuity and bring the microphone and loudspeaker 

signals into alignment again. Here, we propose a novel 

method for effective CD compensation.  

4.1 Frequency Domain Multi-Step CD Compensation  

In common practice, the AEC adjusts one of the stream 

buffers by one sample when the accumulative clock drifting 

is greater than one sample.  The nature of adjustment 

dictates that the upper limit of the alignment accuracy is one 

sample. Suppose x[n] is one of the streams and X[k] is its 

DFT. In case the stream is adjusted by one sample delay, 

i.e., x’[n]=x[n-1], the spectrum of the adjusted signal is 

given by KkjekXkX /2][][' π−= where K is the DFT size, 

and Kkje /2π− is the phase change due to the one-sample 

delay. The phase variability is sudden and significant at high 

frequencies, causing filter divergence and consequently 

noticeable quality degradation.   

We propose that the CD compensation should be 

applied similarly to how CD occurs, i.e., the compensation 

should be applied gradually and continuously with time. The 

phase changes should be small (fractional sample) and 

graduate enough so that the subband adaptive filters are able 

to catch up easily without quality degradation. We called 

this method multi-step CD compensation, in contrast to uni-

step CD compensation where the minimal adjustment is 

always one sample.  

However, instead of performing fractional sample delay 

in time which can be computationally expensive, we take 

advantage of the frequency domain that the AEC operates 

in. Specifically, for the case of P sample delay, we spread P 

evenly across M consecutive frames by performing: 
KkSjekXkX /2][]['' π−⋅= which approximates the fractional 

sample delay in time domain ][]['' Snxnx −= where 

M
PS =  is referred to as the step size.  Due to the circular 

shift property of the DFT, the approximation is only valid 

when P << K. When P accumulates to a certain level, we 

reduce the burden on the frequency domain method by 

offloading a convenient portion of P to an equivalent time 

domain operation so that P remains small. Although it is 

rare, when the CD rate is larger or close to 1 sample per 

frame, this offloading process will happen frequently 

enough to cause a stability problem. In this case, we instead 

use a time domain re-sampler to handle the higher CD more 

effectively.  

4.2 Adaptive Step Size Determination 

Ideally, to precisely compensate for the CD, the step size 

should match the CD rate, i.e. IRFS s= , where R is the CD 



rate, Fs the sampling rate and I the frame size. However, in 

practice since R and Fs are unknown and may be time 

varying, we use the following mechanism to determine the 

step size adaptively. 

We let 
jj PS ρ=  at the j

 th
 frame where ρ  is a constant 

set empirically to ensure stability and quick convergence, 

and Pj , a rational number, is accumulated based on 
∧

R . At 

each data frame where ρ>jP , a phase compensation of 

Kkj je
/2 φπ−

will be applied, where ∑ =
=

j

l lj S
0

φ . As time 

goes on, when φ
j
crosses a predetermined threshold Q, we 

perform an equivalent Q sample shift in time. Pj and φ
j 

 , 

then, will be updated as follows: Pj = Pj – Q and 

Qjj −= φφ . 

5. RESULTS 

We have integrated the algorithms presented above to our 

software AEC system and obtained the following positive 

results. Our software AEC runs robustly on various 

operating systems under diverse operating conditions. The 

average computation load is about 50 MIPS.  

Figure 3 shows an example of small and large glitches 

in the RSO.  The raw RSO is shown as the blue trace, while 

the output of the MA filter is shown in red.  For 

convenience, the sample numbers and frame number are 

converted into physical time.  In this example, the estimated 

clocking drifting rate 
∧

R is 0.0002, and the estimated variance 

of RSO 
∧

2σ is 0.083 (ms
2
).  At 8 second, there is a big glitch 

with size of 5.3 ms, which is detected immediately.  At 12 

second, there is a small glitch of 0.5 ms, which is about the 

same amount as the maximum of RSO error. Despite the 

challenge, the small glitch is successfully identified after 

about 1 second.  

An example of the multi-step CR compensation is 

shown in Figure 4.  The original data shown in the figure is 

sampled at 16 kHz with a CR rate of 1.7x10
-4

, which needs 

one-sample adjustment for every 0.37 seconds.  The blue 

line shows the AEC output using the uni-step compensation 

method where there are three adjustments at 3.08, 3.45, and 

3.82 second, respectively.  The red line shows the AEC 

output using the multi-step CR compensation.  The multi-

step method has clearly better quality and yields much 

smoother output with very low echo level, while with the 

uni-step method the residue echo level rises after the 

adjustment and the degradation (echo leak) lasts about 50-

100 ms.  In terms of Echo Return Loss Enhancement, we 

observe about 6-7 dB local improvement, and about 2 dB 

average improvement.  In this example, the step size was 

adapted automatically between 0.02 and 0.03. The long term 

average of the step size matches the actual CD rate when the 

sampling rate Fs and frame size I are factored in. 

 

 

 
Figure 3. Glitch Detection 

 

 

 
Figure 4. Uni-step vs. multi-step compensation. 

6. CONCLUSIONS 

In this paper, we have considered several unique 

challenges that adversely affect the quality of software AEC 

running on a PC. Effective solutions are proposed and 

demonstrated. Our AEC implementation, while significantly 

improved, is still far from perfect. Future work and further 

improvements are definitely recommended. 
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