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ABSTRACT

The ultimate goal of instantaneous blind signal extraction is to find
one source out of an instantaneous mixture of many others, with-
out, or with a minimum of, prior information. Extraction can be
performed by first identifying the complete mixing system and sub-
sequently inverting that system. The goal of this paper is to describe
the problems behind blind extraction and to directly find the extract-
ing solution, without first identifying the complete mixing system.
The proposed method uses second order statistics to identify the ex-
tracting solution and can be applied to mixing problems with differ-
ent kinds of temporal structure e.g. non-stationarity, coloredness.

Index Terms— Blind Signal Processing, Blind Signal Extrac-
tion, Second Order Statistics.

1. INTRODUCTION

In the field of ‘Blind Signal Processing’ several subproblems, e.g.
Blind Source Separation (BSS), Blind Identification (BI), and Blind
Signal Extraction (BSE), can be identified. These individual prob-
lems attained a lot of attention, for example in [1–5] and the refer-
ences therein. The given problems apply to several kinds of mixing
problems e.g. instantaneous and convolutive mixtures, which are
over-determined, under-determined, or square. The procedures to
solve the individual problems rely on various assumptions like sta-
tionarity or sparseness and use different properties like second order
statistics, higher order statistics, etc. This work uses the framework
described in [1, 2]. It has been proven that the framework works for
BI and we show that, with small adjustments, we can find extraction
vectors of a square or over-determined mixing system, without first
identifying the complete mixing system. Well known mathemati-
cal tools like SVD and eigenvalue decomposition are used and at
this moment the proposed method finds the BSS solution. When the
method is implemented for batch, online or realtime operation, the
algorithm should be adjusted to only and directly select the desired
solution. The given framework allows for these adjustments.

This paper is organized as follows. First the model is described
and all assumptions are given in Section 2. Subsequently the ideal
solution to extract the desired source is given in Section 3. A method
to find the extracting solution is described in Section 4. In Section 5
simulation results are given and finally conclusions and future re-
search are discussed in Section 6.
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Fig. 1: Instantaneous mixing model

2. MIXING MODEL AND ASSUMPTIONS

A graphical representation of the instantaneous mixing system is
given in Fig. 1. The system can be described by a real-valued mixing
matrix A, and therefore we can give a mathematical representation
of the mixing system by:

x[n] =

S
∑

j=1

a
j
sj [n] + ν[n] = As[n] + ν[n] ∀n ∈ Z, (2.1)
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are real-valued column vectors representing the D sensor signals,
S source signals, D noise signals, and S independent mixing
columns of length D, respectively. Putting all mixing columns
together in a matrix results in the D × S mixing matrix given by
A =

[

a
1 · · · a

S
]

.
Notation, as already used in the equations above, of matrices and

vectors is in bold upper and lower case letters, respectively. Sub-
script and superscript indices refer to row and column elements in a
vector, respectively. Elements of a matrix, in lower case letters, are
indexed with both subscript and superscript for the row and column
index, respectively. Using this notation, one element of (2.1) can
therefore be written as:

xi[n] =
S
∑

j=1

a
j
isj [n] + νi[n] ∀n ∈ Z, ∀ 1 ≤ i ≤ D.

Furthermore, the discrete time index n ∈ Z denotes the sample num-
ber.

Our method exploits Second Order Temporal Structure (SOTS)
of the data. Therefore, we have to make a number of assumptions
on the SOS of the source and noise signals. First of all we define the
operators which are used to acquire the SOS.



Definition 2.1. The correlation function of source signal pair
(si1 , si2) ∀ 1 ≤ i1, i2 ≤ S at a given time n and with a certain
lag k is given by:

r
s
i1i2

[n, k] , E {si1 [n]si2 [n − k]} ∀n, k ∈ Z,

with E{·} the mathematical expectation operator.

The correlation functions can be approximated by averaging
over a block of stationary data. If non-stationary sources are present,
we can use multiple blocks, in which the sources are temporally
approximately stationair, to estimate the statistics. The time index n

therefore represents the statistics in the n’th block of data.
In a similar way as the source signal correlation functions,

the noise and sensor correlation functions and source-noise cross-
correlation functions for time-lag pair [n, k] are defined by:

r
ν
i1i2

[n, k] , E {νi1 [n]νi2 [n − k]} ;

r
x
i1i2

[n, k] , E {xi1 [n]xi2 [n − k]}

r
sν
ij [n, k] , E {si[n]νj [n − k]} .

Using these definitions, we are able to define a so-called Noise-Free
Region of Support (Ω):

Definition 2.2. The Noise-Free Region of Support (ROS), also de-
noted by Ω, is a set of time-lag pairs (n, k) for which the noise cor-
relation functions and the source and source-noise cross-correlation
functions, at these pairs, equal zero:

∀ (n, k) ∈ Ω :
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



r
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[n, k] = 0 ∀ 1 ≤ i1 6= i2 ≤ S;

r
ν
i1i2

[n, k] = 0 ∀ 1 ≤ i1, i2 ≤ D;

r
sν
ij [n, k] = 0 ∀ 1 ≤ i ≤ S, 1 ≤ j ≤ D.

From these assumptions it follows that in theory the noise sig-
nals do not influence the sensor correlation functions, when we take
the time-lag pairs from the ROS.

Since we need the source correlation matrix to be full rank, we
have to make an additional assumption. The source auto-correlation
functions have to be linearly independent in Ω:

S
∑

i=1

ξ
i
r

s
ii[n, k] = 0 ⇐⇒ ξ

i = 0 ∀ 1 ≤ i ≤ S. (2.2)

3. SOLUTION OF THE EXTRACTION PROBLEM

Using the model described in (2.1), the goal of blind extraction is to
find one desired source out of a square or over-determined mixture
of many others, by identifying a row vector wi such that:

ŝi[n] = wix[n] = wiAs[n] + wiν[n],

where ŝi[n] is the estimation of the desired source. Since blind pro-
cessing can be performed up to the well known scaling and permu-
tation indeterminacy, we can say without loss of generality, that we
want to find the first source signal, i.e. find a vector w1 such that:

ŝ1[n] = w1x[n] = w1As[n] + w1ν [n]. (3.1)

If the estimation is performed completely blind, we cannot identify
whether the desired source is extracted. If some a priori knowledge
is present, we can try to extract only the desired source, but the focus
in this paper is on developing a method which can be modified by en-
closing a priori knowledge to select the desired source. Furthermore,

in the remaining of this work we assume that we can take the time-
lag pairs from the ROS and therefore we can omit the noise terms in
the equations, since the goal is extraction and not noise reduction.

From (3.1) it follows that the extraction vector w1 has to satisfy
the following equation to perform the actual extraction:

w1A = αe1 ∀α 6= 0, (3.2)

with e1 the standard basis row vector with a one at the first column
and zeros at all other columns. For the full rank square mixing sys-
tem, the extracting solution is given by:

w1 = αe1 (A)−1
. (3.3)

From this result we can see that this solution is obtained by taking a
scaled row vector of the inverse of the mixing system. This is only
possible when the mixing system is a full-rank matrix and α 6= 0.
The solution of the over-determined mixing system can be found by
using the pseudo inverse or by taking a subset of S sensors. Subse-
quently the remaining sensors can be used for noise reduction, but
this is out of the scope of this paper. Therefore, in this paper we de-
velop our method on the square mixing case. We will illustrate the
solution in (3.3) in the following example.

Example 3.1. Suppose we have a 3 × 3 mixing matrix given by:
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Writing down the first row of the inverse of A results in the desired
extraction vector:

w1 =
α

detA

[
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2a
3
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]

,

and thus according to (3.2):

w1A =
[

α 0 0
]

.

Note that this is the desired extraction vector and that the solution
w1 is only depending on the undesired mixing columns a

2,a3.

It can be shown in general that the desired extraction vector is
depending only on the undesired mixing columns:

w1⊥ span
(

a
2
, · · · ,a

S
)

.

In future research, when for example a priori knowledge about the
desired mixing column is known, we know that we cannot directly
use that information on the extracting solution.

4. PROPOSED METHOD BASED ON SOS MATRIX
STRUCTURE

In this section we propose a method to obtain the extraction vectors
by writing the source correlation functions into the structure pro-
posed in [1, 2], and subsequently performing a Generalized Eigen-
value Decomposition (GEVD).

Stacking the sensor correlation functions for every time-lag pair
[n, k] ∈ Ω and all combinations of sensors in a special structure
correlation matrix C

x of size D2 × N , we obtain:
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with Ωi = [ni, ki] ∀ 1 ≤ i ≤ N . We can also describe such a
structure for the source correlation functions:

C
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,

which is of size S × N . Using the structure of these matrices, we
can express the sensor correlation matrix C

x in terms of the mixing
system A and the source correlation matrix C

s:

C
x = (A ⋄ A)Cs = A

2

⋄C
s
, (4.1)

where A
2

⋄ = A ⋄ A is the second order Khatri-Rao product of the
mixing system and C

s is a full rank matrix because of the assump-
tion in (2.2). We now consider three cases, first of all if N < S, the
extraction vector cannot be obtained, since:

rank(Cx) = N < S.

The second case is when N = S, then we can split the matrix C
x

into S full rank sub-blocks:

C
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C
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
, with: Cx

i = A diag(ai)C
s
,

with diag(·) a diagonal matrix with the elements of the input vector
on the diagonal. If we now take 2 random linear combinations of the
transpose of these sub-blocks, as already described for BI in [1], we
can write the extraction problem as a generalized eigenvalue problem
according to:

[W, Λ] = gevd(Γ1,Γ2), with: Γj =

S
∑

i=1

ξ
j
i (C

x
i )T

, (4.2)

where (ξ1 ∈ R
S) 6= (ξ2 ∈ R

S) are two random vectors, W is a
matrix containing the eigenvectors and Λ is a matrix containing the
eigenvalues. Note that if the linear combinations of the sub-matrices
remain full rank, then the eigenvectors of this problem are scaled
rows of the inverse of the mixing system, thus all our solutions wi.
This holds, because we can write from 4.2:

S
∑

i=1

ξ
1

i (Cs)T diag(ai)(A)T
µ = λ

S
∑

i=1

ξ
2

i (Cs)T diag(ai)(A)T
µ,

and this has the following S solutions for the eigenvalues λ:

λp =

∑S

i=1
a

p
i ξ1

i
∑S

i=1
a

p
i ξ2

i

∀ 1 ≤ p ≤ S. (4.3)

Now the S corresponding eigenvectors µp are the transpose of the
corresponding row vector of (A)−1, thus the transpose of our de-
sired solution wi. Note from (4.3) that the eigenvalue only con-
tains information of the desired mixing column, while the extraction
vector wi = (µp)T is independent of this mixing column. There-
fore, it must be possible in future research to take a priori knowledge
about the desired mixing column into account, to directly select the
eigenvector-eigenvalue pair corresponding to the desired source.

To obtain more insight in the method, an example of the 2 × 2
extraction problem is given.

Example 4.1. The special correlation matrix C
x for a 2× 2 mixing

system is given by:
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]

.

In this case only 2 sub-blocks can be identified:

C
x
1 = A

[

a1

1 0
0 a2

1

]

C
s
, C

x
2 = A

[

a1

2 0
0 a2

2

]

C
s
.

When we choose ξj = e
j , with j = 1, 2, the following generalized

eigenvalue problem is obtained from (4.2):

(Cx
1)T

µ = λ(Cx
2)T

µ,

where C
x
1 and C

x
2 are both full rank and unique because of (2.2) and

because A is full rank. The eigenvalues are now given by: λ1 =
a1

1

a1

2

and λ2 =
a2

1

a2

2

and the corresponding eigenvectors are transposed
and scaled row vectors of the inverse mixing system.

In the final case where N > S, we first have to reduce the matrix
C

x. This reduction can be performed with help of the SVD. We can
write:

C
x = UxΣx(Vx)T = UsΣs(Vs)

T + UνΣν(Vν)T
,

where also a decomposition in signal and noise space is made. It is
known that the noise space eigenvalues ideally equal zero and the
rank of the signal subspace equals S. If we now take the part Us, we
have a linear combination of A

2

⋄, similar to (4.1), given by:

Us = A
2

⋄
M,

where M a full rank matrix is of size S × S. We can again identify
the extraction vectors w1, by finding the generalized eigenvectors of
2 linear combinations of S sub-blocks of Us, thus:

Us =




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U
x
1

...
U

x
S


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, with: Ux

i = A diag(ai)M.

Now solving the GEVD problem as defined in (4.2), with C
x
i re-

placed by U
x
i , will give all extraction vectors in a matrix W, which

is the BSS solution. By choosing only one of the vectors, we have
the extraction vector w1 of one of the sources.

5. SIMULATION RESULTS

By means of a simulation we will show the validity of the method.
A mixture of 3 speech signals, measured with 3 sensors, is contam-
inated by mutually statistically independent white Gaussian noise
sequences, all with a variance of (σν)2 = 1. The source signals
are 10000 samples of speech signals, sampled with 8 kHz and nor-
malized such that (σs)2 = 1. The Signal-to-Noise Ratio (SNR) is
defined by:

SNR ,
E{||As||2}

E{||ν||2}
=

S(σs)2

D(σν)2
,
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Fig. 2: Original source signals (left) and separated and permutated
signals (right), with SNR = 0dB.

thus the SNR for our simulations equals 0 dB. The mixing system,
with normalized mixing columns, is given by:

A =





0.6749 0.4082 0.8083
0.5808 −0.8165 0.1155
0.4552 −0.4082 −0.5774



 .

The measured signals are split in 5 blocks of 2000 samples and we
have taken the lags 1 ≤ k ≤ 5, for every block. The ROS, with a
size of N = 25, now becomes:

Ω = {(1, 1), (1, 2), · · · , (1, 5), (2, 1) · · · , (5, 5)} . (5.1)

Since we have not used the lag k = 0 and we have white Gaussian
noise sequences, we do not suffer from noise.

The developed method can be used to extract all sources indi-
vidually. Since the focus has been on the extraction part, no per-
formance for selecting the desired source can be measured, but we
are able to separate all sources, thus we can use a Performance In-
dex (PI) used in [2] for BSS, which measures the residual amount of
mixing. If we define T , (W)T

A, we obtain the following PI:

PI = (D)2
(

D
∑

i=1

{

∑D

j=1
|tj

i |

maxk |tk
i |

+

∑D

j=1
|ti

j |

maxk |ti
k|

− 2

})−1

,

In Fig. 2 the original sources and the separated signals of one
run are depicted. Notice that the extraction vectors are estimated on
the noisy signals, while the actual extraction is performed on noise-
free mixtures of the source, since the goal is not to perform noise
reduction. The performance of this run is given by: PI = 43. A
histogram of the PI values for 5000 runs, with every time new noise
sequences, is depicted in Fig. 3. A Gaussian approximation is made
and we observe that PI behaves like a Gaussian function with a mean
of 34 and a variance of (σPI)2 = 257. This means that 78% of the
estimations lie in the region: 18 ≤ PI ≤ 50.

6. CONCLUSIONS

We described the solution of the extraction problem for a square and
over-determined mixing system. Based on SOS and well known
mathematical tools like the SVD and eigenvalue decomposition, a
method is developed to find the extracting solutions. By means of a
simulation, the validity of the method is shown. It is also shown that
with help of a priori information about the desired mixing column,
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Fig. 3: Histogram of Performance Index (PI) with 5000 different
noise sequences for SNR = 0dB.

an estimation of the generalized eigenvalue can be obtained. This
can help future work to develop a method to find the desired source,
with a minimum amount of a priori knowledge.

This work only forms a basis for the BSE problem and more
investigation is required to deal with real-life situations. In future
research, following important issues are some of the main problems
which have to be resolved:

• The method should be extended to use a priori knowledge,
which can be used to directly select the desired source. We
already showed in (4.3) that information about the desired
mixing column is embedded in the generalized eigenvalues;

• Besides the mixing column information, it should also be pos-
sible to use a priori statistical information about the desired
source to directly find the extracting solution;

• Replacement of the mathematical tools by methods which are
more suitable for online or realtime implementation;

• Development of a method to obtain the desired row vector
from the pseudo inverse of the mixing matrix combined with
noise reduction, in case of an over-determined system;

• The BSE problem should also be solved for the convolutive
mixing case, where filters instead of scalars are used for the
mixing, which is more realistic in acoustic applications.
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