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ABSTRACT

In this paper, a new nonlinear model for improved acoustic echo can-
cellation in the short-time Fourier transform domain is introduced.
The model consists of a parallel combination of linear and quadratic
components. The linear component is represented by multiplicative
terms, while the quadratic component is modeled by multiplicative
cross-terms. We show that for low signal-to-noise ratio (SNR) con-
ditions, a lower mean-square error is achieved by allowing for non-
linear undermodeling and employing only the linear multiplicative
transfer function (MTF) model. However, as the SNR increases,
the performance can be generally improved by the proposed non-
linear model. A significant reduction in computational cost as well
as an improvement in estimation accuracy is achieved over the time-
domain Volterra approach. Experimental results demonstrate the ad-
vantage of the proposed model for nonlinear acoustic echo cancella-
tion.

Index Terms— Nonlinear acoustic echo cancellation, multi-
plicative transfer function, short-time Fourier transform, nonlinear
undermodeling.

1. INTRODUCTION

Loudspeaker-enclosure-microphone (LEM) system modeling in the
short-time Fourier transform (STFT) domain is of major importance
in many acoustic echo cancellation applications, especially when
long echo paths are considered [1]. The multiplicative transfer func-
tion (MTF) approximation [2], which relies on the assumption of a
large analysis window length, is widely-used in such applications
due to computational efficiency (e.g., [3, 4]). However, in many
cases, particularly when small loudspeakers are driven at high vol-
umes, the LEM system often exhibits certain nonlinearities that can-
not be sufficiently estimated by the linear MTF model. \olterra fil-
ters used for modeling the nonlinear LEM system [5, 6] often suffer
from extremely high computational cost due to a large number of pa-
rameters. This problem becomes even more crucial when estimating
systems with relatively large memory length, which is often the case
in acoustic echo cancellation applications.

In this paper, we extend the MTF approximation and introduce
a new nonlinear model for improved acoustic echo cancellation in
the STFT domain. The proposed model consists of a parallel com-
bination of linear and quadratic components. The linear compo-
nent is represented by the MTF approximation, while the quadratic
component is modeled by multiplicative cross-terms. The quadratic-
component model has been recently introduced in [7], and is based
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Fig. 1. Acoustic echo cancellation in the STFT domain.

on a time-frequency representation of a homogeneous second-order
Volterra filter. We consider an off-line echo cancellation scheme
based on a least-squares (LS) criterion, and analyze the obtainable
mean-square error (mse) in each frequency bin. We mainly con-
centrate on the error arises due to nonlinear undermodeling; that is,
when the linear MTF model is utilized for estimating the nonlin-
ear LEM system. We show that for low signal-to-noise ratio (SNR)
conditions, a lower mse is achieved by using the MTF model and
allowing for nonlinear undermodeling. However, as the SNR in-
creases, the acoustic echo canceller (AEC) performance can be gen-
erally improved by employing the proposed nonlinear model. When
compared to the conventional time-domain Volterra approach, a sig-
nificant reduction in computational complexity is achieved by the
proposed approach, especially when long-memory systems are con-
sidered. Experimental results demonstrate the advantage of the pro-
posed approach for nonlinear acoustic echo cancellation.

The paper is organized as follows. In Section 2, we introduce
a new nonlinear STFT model that is based on the MTF approxima-
tion. In Section 3, we present an off-line echo cancellation scheme
for estimating the model parameters. In Section 4, we derive ex-
pressions for the obtainable mse, and investigate the influence of
nonlinear undermodeling on the AEC performance. Finally, in Sec-
tion 5, we present experimental results which support the theoretical
derivations.

2. MODELING THE LEM SYSTEM

A typical acoustic echo cancellation scheme in the STFT domain
is illustrated in Fig. 1. The far-end signal z(n) is emitted by a
loudspeaker, then propagates through the enclosure and received in



the microphone as an echo signal d(n). Together with a near-end
speech signal and local noise [collectively denoted by £(n)], the mi-
crophone signal can be written as y(n) = d(n) + £(n). Applying
the STFT to y(n), we have in the time-frequency domain

Yp.k = dp,k + Ep ke €))

where p is the frame index and & represents the frequency-bin in-
dex (0 < &k < N — 1). To produce an echo estimate dp,k in the
time-frequency domain, a proper STFT model for the LEM system
is needed. The widely-used MTF approximation [2] assumes a rel-
atively large analysis-window length to approximate the system as
multiplicative in the STFT domain, i.e.,

dAp,k = hk Tp,k - (2)

The effectiveness of the MTF approximation in estimating linear
systems has been demonstrated in [3]. However, in many acoustic
echo cancellation applications, particularly when small loudspeakers
are driven at high volumes, the LEM system often exhibits certain
nonlinearities that cannot be sufficiently estimated by the conven-
tional MTF model.

For improved nonlinear echo cancellation, we may extend the
MTF approximation by incorporating a nonlinear component into
the model. To do so, we employ the nonlinear model defined in [7],
which is based on the time-frequency representation of homoge-
neous \olterra filters. Since the nonlinearity of loudspeakers can
be assumed to be limited up to the second order [5], we consider
here only the quadratic case. Accordingly, the output of the pro-
posed nonlinear AEC is given as a parallel combination of linear
and quadratic components in the time-frequency domain as follows:

dp,k =hi Tp,k

+WE Tp 1/ T, (k—k') mod NCk/ ,(k—k') mod N (3)
KeF

where v € {0,1}, cu (k—k') moa v 1S referred to as a quadratic
cross-term, and F = {0,1,...|k/2],k + 1,...,k + 1 +
(N — k —2) /2]}. The conventional MTF approximation is used
in (3) for representing the linear component of the system. The
cross-terms {ck,,(k,k,)mod]\;] k' € F}, on the other hand, are
used for modeling the quadratic component of the system using a
sum over all possible interactions between pairs of input frequencies
xp k and z, v, such that only frequency indices {£’, "}, whose
sum is k or k + N, contribute to the output at frequency bin k. Note
that - controls the nonlinear undermodeling as it determines whether
a linear or a nonlinear model is considered. By setting v = 0, the
nonlinearity is ignored and the linear MTF model is fitted to the data,
which may degrade the system estimate accuracy. The influence of
the parameter ~ on the mean-square performance is investigated in
Section 4.

3. OFF-LINE CANCELLATION SCHEME

In this section, we introduce an LS-based off-line algorithm for echo
cancellation using the proposed nonlinear STFT model. We denote
by P the number of samples in a time-trajectory of x, . Let x =
[ zor @1k TpP_1,k ]T denote a time-trajectory of x,
at frequency bin &, and let the vectors dy, & and y; be defined
similarly. For notational simplicity, let us assume that k£ and N are
both even, such that according to (3), the number of quadratic cross-

terms in each frequency bin is N/2 + 1. Then, let

]T
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denote the quadratic cross-terms at the kth frequency bin, and let

Ap = [ Xok XN+l N+l ] be

an P x (N/2 + 1) matrix, where x;, » = X, © X3/, and © denotes

a term-by-term multiplication. Then, the AEC output signal (3) can
be written in a vector form as

c,=[Cuk - C k Ck+1,N—1 *** CN+4k N4k

E
2’ 27 0T 2

Xk & Xk+1,N—1
272

dy (0k) = xphi + yArck 2 R0y, (5)

where Rx = [xx yAx],and 0 = [hs cf]T is the model parame-
ters vector. The subscript ~ in &7;@ (64) indicates the dependence of
the echo estimate on the model structure, which can be either linear
or nonlinear. Finally, using the above notations, the LS estimate of
the model parameters at the kth frequency bin is given by

0.k = argmin[lyx — R0 |” = Rl yi ©
k

where R, = (RY,R.x) 'R} is the Moore-Penrose pseudo in-
verse matrix of R.%. Substituting (6) into (5), we obtain the best
estimate of the echo signal in the STFT domain d. . (6x) in the LS
sense, for a given ~ value.

4. MSE ANALYSIS

In this section, we derive expressions for the mse obtainable in the
kth frequency bin, and investigate the influence of nonlinear under-
modeling (controlled by ~) on the AEC performance. For a tractable
analysis, we assume that x, ; and &, x are zero-mean white Gaus-
sian signals with variances o2 and a'g, respectively, and that they are
statistically independent.

4.1. Relations Between MSE and SNR
The (normalized) mse is defined by

1 R . 2
EkziE{’dk_dkok’} (7)
Y E{”dkH2} ‘ Y ( "/)‘

where E{-} denotes expectation. Recall that ey, denotes the mse
obtained by using only the linear MTF model, and ¢, is the mse
achieved by incorporating also a quadratic component into the model
[see (3)]. Substituting (5) and (6) into (7), the mse can be expressed

as
€1 — €2

e =1+——
E{|dxl?}
where e; = E{¢{'RxR] &} and e; = E{d{'R,,R], d)}. Us-

ing the whiteness assumption for &, i, and the property that a”b =
tr(ab)* for any two vectors a and b, ¢; can be expressed as

®)

€1

tr (B{&l} BRRLY)

—1\ *
agE{tr (RERRW (Rfkak) ) }

=0 [1+7(N/2+1)]. ©)

For evaluating e2, let us assume that x,, 1, is ergodic and that the data
length P is sufficiently large. From (5), the inverse of R%Ryk can



be expressed as
-1
(RIAR.) = {

where from the ergodicity, the ¢th term of Af x,, may be approx-
imated as (A{'xx), ~ PE{a}, ¢, Th, (k1. ) moa NTm.k} Where
L, = Lif ¢ < k/2,and ¢, = £+ k/2 otherwise. Since odd-order
moments of a zero-mean complex Gaussian process are zero [8], we
get (A4'xx), ~ 0, and (10) reduces to
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where On 1 is a zero vector of size N x 1. Substituting (11) into
the expression for €2, we obtain

€2 = €12 + Y€22 (12)

where €12 = E{d x;x/d,} and €22 = E{d A, Ald,}. Finally,
denoting the SNR by = o3 /02, where o5 = E{|d, |}, and
substituting (9) and (12) into (8), we obtain

evr = % + Bk (13)

where o, = 1/P +~[N/2 +1]/Pand 8,1, = 1 — e12/(Po3) —
yeaa/(Po3). We observe from (13) that the mse e, for fixed val-
ues of v and k, is a monotonically decreasing function of 7. Note
that e22 can be rewritten as

2 =E {dkH(AkAL)HAkALdk}
:E{“AkALdk“Q} >0. (14)

Then, following the nonnegativity of es2, it can be verified that
a1k > aok and Bk < Bok, which implies that €1, > €or for low
SNR (n << 1), and €1 < €qx for high SNR (n >> 1). Accord-
ingly, for low SNR conditions, a lower mse is achieved by allowing
for nonlinear undermodeling and employing the conventional linear
MTF model in the estimation process. On the other hand, as the
SNR increases, the mse performance can be generally improved by
incorporating also the nonlinear component into the AEC (v = 1).
These points will be further demonstrated in Section 5.

4.2. Computational Complexity

Forming the normal equations (Rﬁng)éwk = R yx in (6),
solving them using the Cholesky decomposition and calculating the
desired signal estimate (5) for each frequency bin, require NP[1 +
(N /2+1)]? arithmetic operations, where P is assumed sufficiently
large, and the computations required for the forward and inverse
STFTs and neglected. The computational cost of the proposed ap-
proach is therefore (/2 + 1) times larger than that of the conven-
tional MTF approach (v = 0). It should be noted here that a time-
domain off-line estimation process with a second-order \olterra fil-
ter requires PL [N1 + N2 (N2 + 1) /2] arithmetic operations [7],
where N7 and N are the memory length of the linear and quadratic
\olterra kernels, respectively, and L is the translation factor of the
STFT. For typical values of N = 256, L = 128 (i.e., 50% over-
lap between consecutive windows), N1 = 1024 and N2 = 60, the
complexity of the proposed approach is reduced by approximately
250, when compared to the complexity of the time-domain Volterra

approach.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results that demonstrate the
effectiveness of the proposed approach. In the first experiment, we
examine the proposed AEC performance for white Gaussian signals,
and demonstrate the influence of nonlinear undermodeling by fitting
both linear and nonlinear models to the data. The input signal z(n)
and the additive noise signal £(n) are uncorrelated zero-mean white
Gaussian processes. The LEM system is assumed to be represented
by a second-order Volterra filter, which relates the input z(n) and
output y(n) as follows:

) = Y ha(m)e(n—m) (15)
m_l\(;gfl Ny—1
+ > Y ha(m,Oax(n — m)z(n — £) + £(n)
m=0 £=0

where hi(m) and ha(m, £) are the linear and quadratic \Volterra ker-
nels, respectively, and N1 and N- are their corresponding memory
lengths. The quadratic kernel is modeled as a unit variance zero-
mean white Gaussian process, whereas the linear kernel is mod-
eled as a stochastic process with an exponential decay envelope, i.e.,
h(n) = u(n)B(n)e %" [where u(n) is the unit step function
and 3(n) is a unit-variance zero-mean white Gaussian process]. The
memory lengths are set to Ny = 50 and No = 40. To maintain
the large analysis-window support assumption, a Hamming analysis
window of length N = 8N; with 50% overlap is employed. The
AEC performance is evaluated by the time-domain mse, defined by

1 R 2
“=— — __E ’dn—dn‘} 16
= wreryE e - @ (16
where d(n) is the clean output signal [i.e., d(n) = y(n) — &(n)],
and d., (n) is the inverse STFT of the AEC output signal d,, ;. [see
(3)], as obtained for a given ~ value. Figure 2 shows the result-
ing mse curves ¢o and ¢; as a function of the SNR, as obtained for
nonlinear-to-linear ratios (NLRs) of 10 dB and —10 dB. The NLR
represents the power ratio between the output signals of the quadratic
and linear components of the true system. The results confirm that
for relatively low SNR values, a lower mse is achieved by using the
linear MTF model (v = 0) and allowing for nonlinear undermodel-
ing. For instance, Fig. 2(a) shows that for a —20 dB SNR, employing
only a linear model reduces the mse by approximately 18 dB, com-
pared to that achieved by the nonlinear model (v = 1). However, for
high SNR values, the proposed model is considerably more advanta-
geous, as it enables a substantial decrease of 20 dB in the mse for an
SNR of 20 dB. A comparison of Figs. 2(a) and (b) indicates that as
the NLR decreases, the two curves intersect at a higher NLR value.
This implies that when the nonlinearity of the LEM system becomes
weaker (i.e., the NLR decreases), higher SNR values should be con-
sidered to justify the estimation of the nonlinear component. More-
over, one can observe that the relative improvement achieved by the
proposed model at high SNR values becomes larger when increas-
ing the NLR. Specifically for an SNR of 30 dB, the proposed model
improves the mse of the linear MTF model by 13 dB for a —10 dB
NLR [Fig. 2(b)]; whereas a larger improvement of 21 dB is achieved
fora 10 dB NLR [Fig. 2(a)].
In the second experiment, we demonstrate the proposed ap-
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Fig. 2. MSE curves as a function of the SNR for white Gaussian
signals, as obtained by the MTF approach (o) and the proposed ap-
proach (e1). (&) Nonlinear-to-linear ratio (NLR) of 10 dB (b) NLR
of —10 dB.

proach in a real acoustic echo cancellation scenario using speech
signals. We use an ordinary office with a reverberation time Tgo of
about 100 ms. The far-end speech signal is fed into a loudspeaker at
high volume (thus introducing non-negligible nonlinear distortion),
and received in a microphone, which is located 10 cm away from the
loudspeaker. The effective length of the echo path is 100 ms, and
the signals are sampled at 16 kHz. In this experiment, we compare
the performance of the subband models (both linear and nonlinear)
to that of the fullband (second-order) Volterra model, where the pa-
rameters of the latter are also estimated off-line. The performance
is evaluated in the absence of near-end speech, since in such case a
double-talk detector (DTD) is often employed to freeze the estima-
tion process. We use an analysis window length of N = 1024 for
the linear MTF model in order to validate the large window support
assumption. For the proposed model, on the other hand, a smaller
length of N = 256 is employed in order to maintain a reason-
able computational complexity (see Section 4.2). In addition, for
the Volterra model, the memory lengths of the linear and quadratic
kernels are set to 768 and 60, respectively. Figures 3(a)—(b) show the
far-end signal and the microphone signal, respectively. Figures 3(c)—
(e) show the residual echo signal e(n) [= y(n) — d(n)] obtained
by the time-domain Volterra model, the MTF model and the pro-
posed model, respectively. The values of the resulting echo-return
loss enhancement (ERLE), defined as E{y*(n)}/E{e?*(n)}, were
also computed, and are given by 18.1 dB (Volterra), 12.6 dB (MTF),
and 20.5 dB (proposed). Clearly, the linear MTF model does not pro-
vide a sufficient echo attenuation, mainly due to the significant non-
linearity of the echo path. The proposed model, on the other hand,
achieves an improvement of 2.4 dB in the ERLE with a lower com-
putational complexity, compared to using the time-domain Volterra
model.

6. CONCLUSIONS

Based on the MTF approximation, we have introduced a new non-
linear model for improved acoustic echo cancellation in the STFT
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Fig. 3. Temporal waveforms. (a) Far-end signal (b) Microphone sig-
nal. (c)-(e) Error signals obtained by a time-domain Volterra model,
linear MTF model, and the proposed nonlinear model, respectively.

domain. The proposed model achieves a significant improvement
in mse performance over the linear MTF model. Compared to the
\olterra approach, the proposed approach provides better estimation
accuracy, with a substantially lower computational cost. Future re-
search will concentrate on constructing an adaptive AEC by exploit-
ing the attractive properties of the proposed model.
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