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ABSTRACT

In hands-free scenarios the desired speech signal picked up by the

microphone is corrupted by various disturbances such as additive

noise, acoustic echoes, and room reverberation. Especially the can-

celation of room reverberation still remains a challenging task. For

time-variant acoustic environments adaptive filters with appropri-

ate learning algorithms based on the well-known least-mean-squares

(LMS) algorithm can be used. Examples known from the field of

active noise control (ANC) are the filtered-X LMS (FxLMS) or the

modified filtered-X LMS (mFxLMS). In this contribution a decou-

pled version of the mFxLMS with a faster convergence speed will be

introduced. Furthermore, an overclocking of the filter update can be

applied which allows for even faster convergence at the cost of ad-

ditional computational load. The new algorithm is evaluated under

realistic environments including ambient noise and estimation errors

of the room impulse response (RIR).

Index Terms— Listening-room compensation (LRC), acoustic

equalization, acoustic echo cancelation (AEC), system identification

1. INTRODUCTION

Equalization of room impulse responses (RIRs) [1] still remains a

challenging task. Since a RIR is a mixed-phase system, in general,

only its minimum-phase component can be inverted by a causal sta-

ble IIR filter [2]. Thus, finite-length FIR filters can be applied that

minimize the mean squared error between the signal at the refer-

ence microphone and a given desired signal which usually is a de-

layed or filtered version of the unreverberated sound signal [3]. The

straightforward minimization of the system distance of the equal-

ized system h[k]∗ cEQ [k] and the desired target system d[k] leads to

the well-known least-squares equalizer which implies an inversion

of the channel convolution matrix that usually has a dimension of

several thousand coefficients [4]. Even for minor RIR changes the

equalizer (EQ) filter has to be recalculated [5]. Since RIRs are time-

varying, e.g. due to changes in the acoustic environment or changes

caused by moving speakers, the EQ has to be updated frequently.

Thus, an adaptive algorithm for the equalizer is necessary. Promi-

nent learning algorithms for the EQ filter update are the filtered-X

least-mean-squares (FxLMS) algorithm [6, p. 280ff] or the modified

filtered-X LMS (mFxLMS) [7]. Fast variants based on the recursive

least-squares (RLS) algorithm exist [8] which cause high computa-

tional load and might suffer from stability problems.

In this contribution we introduce a decoupled version of the

mFxLMS. This new algorithm has the capability to converge faster
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than FxLMS and mFxLMS (even in speech pauses) because it is ex-

cited independently from the input signal. Its convergence speed can

be further increased by overclocking the filter update because it is

also independent of the number of samples of the original input sig-

nal. Thus, a tradeoff between convergence speed and complexity can

be utilized to adapt it to the available processing power.

The remainder of this paper is organized as follows: Section 2

briefly reviews the FxLMS and the mFxLMS and introduces the de-

coupled FxLMS. Section 3 discusses disturbances which may occur

in a real-world scenario, such as additive noise or imperfect esti-

mates of the RIR. Section 4 presents some simulation results and

Section 5 concludes the paper.

Notation: Vectors and matrices are printed in boldface while

scalars are printed in italic. k is the discrete time index. The su-

perscripts T and ∗ denote the transposition and the complex conju-

gation, respectively. The operator ∗ denotes the convolution of two

sequences and the operator convmtx{h, Lc} generates a convolution

matrix of size (Lc + Lh − 1) × Lc.

2. LISTENING-ROOM COMPENSATION

In a common setup for listening-room compensation the equaliza-

tion filter precedes the acoustic channel. The goal of the equalizer

is to remove reverberation which is caused by the convolution of

the loudspeaker signal with the RIR at the position of the reference

microphone where the user of the system is assumed to be located.

Spatial robustness with respect to the distance between reference mi-

crophone and the user of the LRC system can be increased by multi-

microphone systems [4] and will not be considered in this contribu-

tion.

2.1. Filtered-X LMS and modified FxLMS

Since the RIR between loudspeaker and microphone is time-variant,

in general, the RIR identification as well as the RIR equalization

has to be done adaptively. A benchmark for adaptive equalization

known from active noise control (ANC) systems is the FxLMS [6]

algorithm which is depicted in Fig. 1.

The unreverberated speech signal s[k] is fed through the room

equalization filter cEQ[k] which precedes the acoustic channel h[k].
The aim of the equalizer is to minimize the distance between the

equalized system h[k] ∗ cEQ[k] and a desired target system d[k].
The input signal of the LMS update path has to be filtered with the

acoustic channel h[k] [6] which is not available in real world sys-

tems. Thus, an estimate ĥ[k] of the RIR (known as the plant model

in ANC systems) is needed. Since changes of the filter coefficients

cEQ[k] do not have an immediate impact on the error signal eEQ[k]



eEQ[k]

cEQ[k]

d

h[k]
s[k] x[k] y[k]
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Fig. 1. Block diagram of filtered-X LMS (FxLMS).

due to the delay of the RIR a small stepsize µ for the filter update is

required to ensure stability. Thus, especially if a large filter length is

required the FxLMS algorithm suffers from slow convergence.

The FxLMS algorithms can be written in matrix/vector notation

as follows:

Algorithm 1 Filtered-X LMS (FxLMS)

1: r[k] = Ĥ
T [k]sI[k]

2: eEQ[k] = s
T
II[k]H[k]cEQ[k] − s

T
II[k]d

3: cEQ[k + 1] = cEQ[k] + µr[k]eEQ[k]

Here cEQ[k] is the coefficient vector of the equalizer, H[k] and

Ĥ[k] are the convolution matrices of the RIR and its estimate, re-

spectively, d is the desired system vector, and s[k] is the input signal

vector given here for two different lengths:

cEQ[k] =
[
cEQ,0[k], cEQ,1[k], ... , cEQ,Lc,EQ−1[k]

]T
(1)

H[k] = convmtx
{

[h0[k], h1[k], ..., hLh
[k]]T, Lc,EQ

}

(2)

Ĥ[k] = convmtx

{[

ĥ0[k], ĥ1[k], ..., ĥL
ĥ
[k]

]T

, Lc,EQ

}

(3)

d = [ 0, ..., 0
︸ ︷︷ ︸

k0

, d0, d1, ..., dLd−1, 0, ..., 0
︸ ︷︷ ︸

Lh+Lc,EQ−1−Ld−k0

]T (4)

sI[k] = [ s[k], ... , s[k − Lĥ − Lc,EQ + 2] ]T (5)

sII[k] = [ s[k], ... , s[k − Lh − Lc,EQ + 2] ]T (6)

The lengths of the RIR, the RIR estimate, the LRC filter and the

desired system are denoted by Lh, Lĥ, Lc,EQ, and Ld, respectively.

k0 is the delay of the desired target system that will be introduced by

the equalizer.

To overcome the problem of a heavily reduced allowed conver-

gence speed in comparison to the conventional LMS algorithm the

modified filtered-X LMS (mFxLMS) algorithm [7] was introduced

which is depicted in Fig. 2. In contrast to the FxLMS the calcula-

tion of the error signal of the modified FxLMS eEQ,mod[k] is inde-

pendent of the room impulse response and thus independent of the

microphone signal y[k]. Instead, the filter update is based on the

RIR estimate ĥ[k] only. By this, the equalizer cEQ[k] succeeds the

RIR estimate ĥ[k] and for the case of a correct system identifica-

tion (ĥ[k] = h[k]) the convergence performance of the mFxLMS

is the same as for the conventional LMS algorithm because the up-

date of the filter coefficients has direct impact on the error signal

eEQ,mod[k].
The mFxLMS algorithm can be summarized as follows:
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Fig. 2. Block diagram of modified Filtered-X LMS (mFxLMS).

Algorithm 2 Modified filtered-X LMS (mFxLMS)

1: r[k] = Ĥ
T [k]sI[k]

2: eEQ,mod[k] = r
T [k]cEQ[k] − s

T
I [k]d

3: cEQ[k + 1] = cEQ[k] + µ′
r[k]eEQ,mod[k]

2.2. A decoupled version of modified filtered-X LMS allowing

for an update overclocking

The mFxLMS depicted in Fig. 2 and described by Algorithm 2 al-

lows for a larger stepsize than the conventional FxLMS and thus for

faster convergence. Since the filter update path is more or less in-

dependent of the system which should be equalized (the error signal

in line 2 of Algorithm 2 is independent of the real RIR and only the

estimate or model is used) we propose to feed the update path with

an independent excitation sdec[k] as it is depicted in Fig. 3.
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Fig. 3. Block diagram of decoupled Filtered-X LMS.

By this, even faster convergence can be achieved since the ex-

citation signal of the update path sdec[k] can be chosen arbitrarily.

Best convergence would be archived for so-called perfect sequences

as an input signal for the NLMS r[k]. Since generation of such a

signal by crafting the excitation signal sdec[k] at the input of the

RIR estimate is difficult we propose to use a white Gaussian excita-

tion for sdec[k]. An additional advantage of the proposed algorithm

is the fact that with a decoupled input signal for the update path

an overclocking of the filter update is possible and by this a tradeoff

between convergence speed and computational complexity. The pro-

posed decoupled filtered-X least-mean-squares (dFxLMS) algorithm

is summarized in Algorithm 3. Here, O ≥ 1, O ∈ N is the over-

clocking factor. The term overclocking does not mean oversampling



since this would affect both, the sampling rate of the signals and the

systems. The sampling rate of the systems, such as that of ĥ[k], is

unchanged while more than one input sample sdec[k] is processed

before copying the filter weights cEQ[k] to the upper branch.

Algorithm 3 Decoupled version of modified filtered-X LMS

1: for i = 0 : O − 1 do

2: r[k + i] = Ĥ
T [k]sdec[k + i]

3: eEQ,mod[k + i] = r
T [k + i]cEQ[k + i] − s

T
dec[k + i]d

4: cEQ[k + i+ 1] = cEQ[k + i] + µ′
r[k + i]eEQ,mod[k + i]

5: end for

6: Copy updated EQ coefficients cEQ[k + i+ 1] to upper branch

3. ERROR INFLUENCES

Two kinds of error influences may have impact on the equalization

filter. The first is additive local disturbance at the microphone (such

as ambient noise n[k] or an interfering local speaker sn[k]) and the

second is the estimation mismatch between the RIR h[k] that shall

be equalized and its estimate ĥ[k].
Since the mFxLMS and the dFxLMS described in the previous

section work independently from the microphone signal y[k] even

strong local disturbances present at the microphone have no influ-

ence on the filter adaptation. This property is advantageous com-

pared to the conventional FxLMS algorithm, especially for a hands-

free scenario with a high background noise level and competing

speakers. It should be mentioned that strong disturbances at the mi-

crophone of course have negative influence on the RIR identification

which is needed by all the algorithms (see next paragraph).

System Identification

All algorithms described so far rely on an estimate ĥ[k] of the acous-

tic channel (the room impulse response h[k]). As described in [4]

adaptive tracking of the time-variant RIR is necessary and, thus, it

is inevitable that estimation errors occur, e.g. in periods of initial

convergence or after RIR changes. Acoustic echo cancelers (AECs)

estimate and subtract the acoustic echo ψ[k] from the microphone

signal y[k] by performing system identification. Thus, the AEC fil-

ter coefficients cAEC[k] can be used as an estimate for the room

impulse response (ĥ[k] = cAEC[k]). As illustrated in Fig. 4 the RIR

h[k] can be split up into one part ĥ[k] which is correctly identified

by the acoustic echo canceller (AEC) and an estimation error h̃[k]:

h[k] =

[

ĥ[k]
0

]

+ h̃[k] =

[
cAEC[k]

0

]

+ h̃[k] (7)

with

h[k] = [h0[k] , h1[k] , ... , hLh−1[k]]
T

(8)

ĥ[k] =
[
cAEC,0[k], cAEC,1[k], ..., cAEC,Lc,AEC−1[k]

]T
(9)

h̃[k] =
[

h̃0[k] , h̃1[k] , ... , h̃L
h̃
−1[k]

]T

(10)

Here, Lc,AEC is the length of the AEC filter which equals Lh̃ and is,

in general, less than the length of the RIRLh. Thus, the so-called tail

of the RIR which cannot be identified by the AEC always contributes

to the estimation error h̃[k] and leads to a decreased performance of

the equalizer [9].

+ +

-
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cEQ[k]

cAEC[k]cAEC[k]
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ψ̂[k]ψ̂[k]

near-end room h[k]

Fig. 4. Combined system of equalizer and acoustic echo canceler.

The RIR can be split into a part modeled by the AEC cAEC[k] and

the AEC system misalignment h̃[k].

4. SIMULATION RESULTS

RIRs of length Lh = 4096 with a reverberation time of τ60 =
500ms were generated [10] at a sampling frequency of fs = 8kHz.

The length of the acoustic echo canceler and the room equalization

filter were set to Lc,AEC = 2048 and Lc,EQ = 1024, respectively.

The desired target system d[k] was chosen as a 40th order FIR high-

pass with 3dB frequency at 200Hz. The delay introduced by the

equalizer was k0 = 511 samples. The algorithms were implemented

in a partitioned frequency domain [11, 12] to reduce the computa-

tional load and the delay introduced by the system.

Evaluation of the algorithms is done by means of the normalized

system distance

DdB [k] = 10log10

||H[k]cEQ [k] − d||2

||d||2
(11)

and the segmental signal to reverberation ratio (SSRR) [13]

SSRR[ℓ] = 10log10

∑LBl−1

k=0 ŷ[ℓLBl + k]2
∑LBl−1

k=0 (ŷ[ℓLBl + k] − y[ℓLBl + k])2
(12)

Here LBl = 128 is the block length, and ℓ is the block index.

Fig. 5 compares the convergence behavior of the modified

filtered-X least-mean-squares (mFxLMS) and the dFxLMS with an

overclocking of 2 and 4 times the block length for a white input

signal. Please note that for a white noise input signal and no over-

clocking the dFxLMS equals the mFxLMS. For this simulation the

RIR estimate was set to the correct RIR but with a reduced length of

Lĥ = Lc,AEC = 2048. It can be seen that the convergence speed

can be increased drastically exploiting the overclocking capabilities

of the decoupled structure introduced in Section 2.2.

Fig. 6 shows the performance gain which is possible due to the

decoupling of input signal and excitation signal for the filter update

path of the dFxLMS. The dashed line shows the convergence be-

havior of the algorithm for sdec[k] = s[k] if s[k] is speech input

(male speaker). No overclocking is performed, thus the convergence

equals that of the mFxLMS. The solid line shows the performance

for a white noise as excitation for the update path sdec[k]. The per-

formance of the equalizer can be drastically increased compared to a

coupled structure (such as the mFxLMS) if a speech signal is the in-

put which is the common case for all practically relevant systems. If

a white noise signal is used for the update path signal sdec[k] instead

of the speech input the algorithm converges much faster.

In Fig. 7 simulations including a RIR estimation error are per-

formed. For this purpose the RIR estimate is generated by adding
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Fig. 6. Performance of the dFxLMS for a speech input and a white

input signal sdec[k] used for the update path.

white Gaussian noise to the correct RIR estimate at different SNRs.

Fig. 7 shows the convergence curves for the three algorithms dis-

cussed above for SNR ratios between the true RIR h[k] and the es-

timation error h̃[k] of 20dB (solid lines), 10dB (dashed lines) and

0dB (dotted lines). Here the term SNR denotes the ratio between

RIR power ||h[k]||2 and error power ||h̃[k]||2. It is clearly visible

that the dFxLMS algorithm (lower three curves) outperforms both

the FxLMS and the mFxLMS, even for an SNR of 0dB. The curves

for the FxLMS and the mFxLMS algorithms for a speech input sig-

nal (marked by the upper circle in Figure 7) are not clearly distin-

guishable because they lie closely together for all SNRs. This is due

to the fact that the performance loss due to the correlated input signal

is dominant. The dFxLMS update path still works with a white ex-

citation signal. Thus, the lower solid line in Fig. 7 is about the same

as the solid line in Fig. 6. Please note that the simulation results in

Figure 7 do not indicate a higher robustness to possible RIR estima-

tion errors. However, the dFxLMS is capable of tracking changes of

the RIR model much faster.

5. CONCLUSION

In this contribution a decoupled version of the modified filtered-X

LMS algorithm for listening-room compensation was introduced and

analyzed. Due to the decoupled structure of the new algorithm a far

better convergence behavior can be achieved compared to the con-
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the equalizer performance.

ventional FxLMS and the mFxLMS. This is due to the fact that the

filter update path can be driven by an appropriate excitation signal.

An overclocking to further increase the performance is possible. The

proposed filter structure is easy to implement and computationally

efficient.
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