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ABSTRACT

This contribution presents the utilization of a linear dynamical

system as an echo path model for the acoustic echo cancella-

tion (AEC) problem. This comprehensive model incorporates

variations in the echo path, near-end speech, and the ambient

noise. It is well known that the optimum state estimation of

such a dynamical system can be performed by the Kalman

filtering algorithm. We show that the frequency-domain im-

plementation of the Kalman filter resembles an LMS-type

frequency-domain adaptive filter (FDAF), with the Kalman

gain as an elegant substitute for the otherwise heuristic step-

size. Owing to the model-based approach, the computation

of the Kalman gain inherently includes the near-end signal

statistics as well as the echo path variability. This renders

the adaptive echo cancellation process fast and robust in the

presence of double talk and noise.

Index Terms— Echo cancellation, Frequency-domain

adaptive filter, State-space modeling, Kalman filter

1. INTRODUCTION

Algorithms designed for AEC have to consider several design

aspects such as robustness in the presence of near-end sig-

nal, convergence speed, tracking ability and low complexity.

Robustness in the presence of double-talk requires an effec-

tive step-size control, which necessitates the inclusion of the

near-end signal statistics in the adaptation process. Numerous

variable step-size algorithms have been proposed in the past

and just recently, e.g., [1, 2] (and references therein). The es-

timation of the near-end signal statistics has turned out to be

problematic, therefore double-talk detectors (DTDs) are fre-

quently used to complement the schemes [2]. Nevertheless,

it is important to realize that on the onset of double-talk, the

adaptive algorithm diverges significantly before the double-

talk is detected. Due to this detection lag and other inherent

DTD imperfections, a DTD-free solution must be sought.

It is essential to emphasize here that the variable step-size

control and the inclusion of the near-end statistics should not

be an outcome of a heuristic deliberation. Any suboptimal

solution, e.g., using excessive regularization, classification or

detection, may cause an increased misadjustment and slower

convergence than desired [3, 4].

General advantages of frequency-domain implementa-

tions of adaptive algorithms over time-domain implemen-

tations have been duly mentioned in the literature [5]. The

objective of this paper is to direct the attention to a Kalman fil-

tering solution for AEC in DFT domain, where the problem is

viewed considering a state-space model for the echo path [6].

The model-based optimal system identification inherently

includes variable step-size control and the near-end signal

statistics, and thus omits any need for a DTD. By means of

appropriate approximations in DFT domain, a diagonalized

set of frequency-domain Kalman update equations can be

derived. In Section 2, we will show that the diagonalized

Kalman filter acquires a structural form for which we intro-

duce the term “State-Space FDAF”. Structural similarities

and differences between the classical FDAF and the State-

Space FDAF will be clarified, which will help to explain the

inherent robustness of State-Space FDAF. The superiority

of the model-based algorithm will be further confirmed by

simulation results, in Section 3, in the presence of continuous

double-talk and time-varying echo path.

Throughout the paper we use nonbold lowercase letters

for time-domain scalar quantities, bold lowercase for vectors

and bold uppercase for frequency-domain quantities. The su-

perscript H denotes Hermitian transposition. We use FM to

denote the DFT matrix of size M . Lowercase letter “k” and

“κ” are reserved for time and block-time indices, respectively.

2. SIGNAL MODELS AND ALGORITHMS

A general AEC scenario occurring in a loudspeaker-enclosure-

microphone (LEM) system is shown in Fig. 1. The far-end

speech signal x(k) is transmitted through the linear echo path

w(k) and gives the echo signal d(k). The received signal

at the microphone, y(k), is the sum of the near-end signal

s(k) and the echo signal d(k). The near-end signal comprises

the near-end speech signal and ambient noise. The estimated

echo path by the adaptive algorithm is denoted by ŵ(k).
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Fig. 1. Acoustic front-end, e.g., of a hands-free telephone.

2.1. Overlap-Save Echo Path Model

A formulation of the linear convolution echo path model by

means of the overlap-save method requires block-oriented

definitions of signals. We define the excitation vector x(κ),
observation vector y(κ), and observation noise vector s(κ):

x(κ) = [x(κR − M + 1), x(κR − M + 2), ..., x(κR)]
H

y(κ) = [y(κR − R + 1), y(κR − R + 2), ..., y(κR)]
H

s(κ) = [s(κR − R + 1), s(κR − R + 2), ..., s(κR)]
H

, (1)

where R denotes the frame-shift. A complex-valued M × M
excitation matrix X(κ) is created by first applying DFT and

then diagonalization to the far-end signal:

X(κ) = diag {FMx(κ)} . (2)

A frequency-domain echo path vector W(κ) is obtained on

the basis of the overlap-save constraint that only M −R non-

zero coefficients of the time-domain echo path w(κ) can be

represented,

W(κ) = FM

(
w(κ)

0

)
, (3)

where

w(κ) = [w0(κ), w1(κ), ..., wM−R−1(κ)]
H

. (4)

Based on these definitions, we can express the linear additive

echo path model in Fig. 1 in a compact matrix-vector form

entirely in the frequency-domain:

Y(κ) = FMQy(κ)

= FMQs(κ) + FMQQ
HF−1

M
X(κ)W(κ)

= S(κ) + C(κ)W(κ), (5)

whereQH = (0 IR) is an R×M projection matrix, included

to linearize the cyclic convolution in DFT domain, and IR
denotes an R × R identity matrix. The term C(κ)W(κ) in

(5) is the echo signal vector in the frequency-domain, where

C(κ) = FMQQ
HF−1

M
X(κ). Here, we can further express that

C(κ) = GX(κ) such that G = FMQQ
HF−1

M
is constant.

2.2. Frequency-Domain Adaptive Filter

Frequency-domain adaptive filtering is a traditional solution

for system identification in AEC [5, 7]. Using the introduced

notation, the error signal computation and the update equation

for the estimated echo path Ŵ(κ) are given as:

E(κ) = FMQ[y(κ) −QHF−1
M
X(κ)Ŵ(κ)]

Ŵ(κ + 1) = Ŵ(κ) + µ(κ)XH(κ)E(κ). (6)

In (6), µ(κ) is an M×M diagonal matrix with each entry rep-

resenting an individual step-size parameter for each frequency

bin. The traditional step-size parameter matrix is given as:

µ(κ) = αΨ
−1
XX

(κ), (7)

where ΨXX(κ) and α are the power spectral density esti-

mate of the far-end signal and the adaptation constant in the

range 0 < α < 1, respectively. The M × M diagonal matrix

ΨXX(κ) is computed by recursive averaging,

ΨXX(κ) = γΨXX(κ − 1) + (1 − γ)XH(κ)X(κ), (8)

where γ is a forgetting factor in the range 0 < γ < 1. More-

over, the cyclic correlation operation in the update equation

for the estimated echo path Ŵ(κ) in (6) can be linearized by

applying a gradient constraint [7].

2.3. Markov Model of the Time-Varying Echo Path

A pragmatic approach towards acoustic echo control entails

that the variation in the echo path between time instants κ
and κ + 1 be considered smooth and gradual. Therefore, a

first-order Markov model [7] can be employed to express the

time-varying behavior of the echo pathW(κ) [6]:

W(κ + 1) = A·W(κ) + ∆W(κ). (9)

In (9), A denotes a time-invariant state transition coefficient

and ∆W(κ) represents a zero-mean, independent and uncor-

related process noise vector, accommodating for the uncer-

tainty in the echo path variation. It is assumed that the value

of A is less than but close to unity. Combining the frequency-

domain observation model (5), and the first order Markov

model (9), we obtain the comprehensive state-space model

as represented by the signal flow graph in Fig. 2.
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Fig. 2. Stochastic state-space model of the unknown time-

varying echo pathW(κ) in the block frequency-domain.



2.4. Exact Kalman Filter in DFT Domain

The one-step prediction based Kalman filtering solution for

obtaining the estimate Ŵ(κ) of the echo pathW(κ), subject

to the state-space model in Fig. 2, can be summarized as [4]:

K(κ) = A·P(κ−1)CH(κ)[C(κ)P(κ−1)CH(κ)+ΨSS(κ)]−1

E(κ) = FMQ[y(κ)−QHF−1
M
X(κ)Ŵ(κ−1)]

Ŵ(κ) = A·Ŵ(κ−1)+K(κ)E(κ)

P(κ) = A·[A·IM−K(κ)C(κ)]P(κ−1)+Ψ∆∆, (10)

where K(κ) is the Kalman gain, E(κ) is the error signal or

innovation process, Ŵ(κ) is the estimate of the echo path

state, P(κ) is the state estimation error covariance, IM is an

M × M identity, Ψ∆∆ = E[∆W(κ)∆WH(κ)] is the pro-

cess noise covariance matrix, and ΨSS(κ) = E[S(κ)SH(κ)]
is the near-end signal covariance matrix with E[ · ] denoting

the expectation operation.

In the Kalman filter, it is crucial to observe that P(κ), eval-

uated from the Riccati difference equation, acts as a system

distance between estimated and true echo path and essentially

controls the value of the Kalman gain K(κ).

2.5. State-Space FDAF

It has been verified that the term G, as introduced in Section

2.1, can be approximated as a scaled identity, G ≈ R

M
IM ,

and therefore C(κ) ≈ R

M
X(κ), while C(κ)P(κ−1)CH(κ) ≈

R

M
X(κ)P(κ−1)XH(κ) [6, 8]. Furthermore, process noise and

near-end signal covariance matrices maintain nearly diagonal

attributes in the transform domain. If the state estimation er-

ror covariance matrix is initialized as a diagonal matrix P(0),
then the termsK(κ) and P(κ) are automatically diagonalized,

too. This enables a fast frequency-domain implementation of

the Kalman filter using vector arithmetics and FFT/IFFT. Di-

agonalization further renders the matrix products commuta-

tive, whereby the Kalman gain in (10) can be expressed as

K(κ)=A·P(κ−1)[X(κ)P(κ−1)XH(κ)+
M

R
ΨSS(κ)]−1XH(κ)

(11)

and thus we may rewrite the echo path update equation as

Ŵ(κ)=A·Ŵ(κ−1) + µK(κ)XH(κ)E(κ), (12)

where µK(κ) is the optimum Kalman step-size given by:

µK(κ)=A·P(κ−1)[X(κ)P(κ−1)XH(κ)+
M

R
ΨSS ]−1. (13)

From (12), a cross-correlation operation is evident and in

analogy to the FDAF [7], an additional gradient constraint

could be applied to linearize the cyclic correlation in the

DFT domain. Using (12) and (13), we formally obtain a

state-space frequency-domain adaptive structure manifesting

our overlap-save echo path model, as shown in Fig. 3. The
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Fig. 3. State-Space FDAF.

comparison between (7) and (13) highlights that the compu-

tation of the Kalman step-size involves not only the far-end

statistics, but also the state estimation error and near-end sig-

nal covariances. An approximation of the near-end statistics

ΨSS(κ) can be retrieved from the error signal E(κ) [4].

3. RESULTS AND COMPARISON

We will present simulation results pertaining to fixed and

time-varying echo paths. All comparisons will be carried

out between the State-Space FDAF and the traditional FDAF.

The performance especially in the simultaneous presence

of double-talk and echo path variability will be highlighted.

Furthermore, as the State-Space FDAF performs system iden-

tification based on the aforementioned Markov model, model

mismatch will also be investigated.

We consider echo path impulse responses comprising of

512 taps. The adaptive filter length is set to M−R = 512, too,

with a block size of M = 1024. The near-end-to-echo signal

power ratio in double-talk is set to 0 dB. The signal presented

in Fig. 4(a) is used as the near-end speech signal. Owing to

the absence of any specific assumption in our algorithm re-

garding the autocorrelation and stationarity properties of the

far-end signal, we use a stationary white Gaussian signal in

the following. The signal presented in Fig. 4(b) is the echo

signal obtained for a time-varying echo path simulation. In

all scenarios, single-talk and double-talk, the stationary near-

end ambient noise level is set to about −30 dB. The criterion

we use for measuring performance and carrying out compar-
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Fig. 4. (a) Near-end speech; (b) Echo for a time-varying echo path.
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Fig. 5. Fixed echo path simulation with continuous double-talk.

isons of adaptive algorithms is the relative system distance,

10 log10(||W(κ) − Ŵ(κ)||2/||W(κ)||2).
Simulation results for the fixed echo path in the presence

of continuous double-talk are presented in Fig. 5. It is evident

that State-Space FDAF clearly outperforms FDAF in terms

of convergence rate and final misadjustment for A = 1. The

setting A = 1, corresponds to a fixed echo path in the state-

space model (9). For A = 0.998, the performance of State-

Space FDAF approaches closer to FDAF, which is due to the

fact that the echo path identification is model-based and the

model mismatch has an impact on the results.

In Fig. 6, we analyze the behavior for a time-varying echo

path. In Fig. 6 (Upper), only a comparison of the tracking

ability is sought. We thus consider a far-end single-talk case

and clearly observe that State-Space FDAF shows a lower

system distance as compared to the traditional FDAF. In Fig. 6

(Lower), performances are compared in the presence of con-

tinuous double-talk, which constitutes the harshest experi-

ment. Naturally, State-Space FDAF exhibits a few dB of prin-

ciple loss as compared to the single-talk case, but its perfor-

mance is still remarkably and consistently superior to FDAF.
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Fig. 6. Time-varying echo path simulation: (Upper) Single-talk;

(Lower) Double-talk.

4. CONCLUSIONS

A state-space frequency-domain adaptive filtering approach
has been discussed and compared to the traditional version in
terms of the resulting system distance. Since the underlying
state-space model of the echo path features the existence of
double-talk and echo path variability, State-Space FDAF pro-
vides all structural elements needed for fast adaptation and
inherent robustness. Nevertheless, the algorithm is efficient
and easy to implement. Simulations have consistently demon-
strated the practical benefit of the discussed algorithm and
the underlying model in the presence of double-talk, ambient
noise, and continuously changing echo paths.
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