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ABSTRACT
This paper proposes a new robust method to perform a multi-
ple TDOA estimation in order to solve the permutation prob-
lem in frequency-domain Blind Source Separation. Accord-
ing to the acoustic propagation model, in frequency-domain,
each separation matrix can be represented with a set of states
associated with each source. A novel transform of the states is
introduced which is independent of the aliasing and of the per-
mutations and is able to perform a joint estimation of multiple
TDOAs. We show that such a transform generalizes the GCC-
PHAT for multiple sources and at the same time generates
envelopes with clear peaks corresponding to the maximum
likelihood TDOAs. By means of the propagation model, the
permutation problem is solved using the estimated TDOAs.
Experimental results show that the proposed approach allows
one to separate two speakers, using very short utterances (0.5-
1s), in highly reverberant environment (T60 = 700ms) even
with widely-spaced microphones.

Index Terms— permutation problem, blind source sep-
aration (BSS), TDOA estimation, independent component
analysis (ICA), speech enhancement, multiple sources local-
ization

1. INTRODUCTION

Among different approaches of source separation, the multi-
channel frequency-domain is maybe the most investigated for
its fast convergence property and reasonable computational
complexity. During the last years a huge number of methods
have been proposed but separation in real-life is still an open
problem. Frequency-domain approaches can directly exploit
the advantages of Independent Component Analysis and long
demixing filters can be estimated in a reasonable time. How-
ever, unlike time-domain approaches, the ambiguity of per-
mutation must be solved and is still an open problem. Among
the most promising ones a robust way to solve the permutation
problem is to estimate the propagation model parameters of
the sources [1]. This approach is suitable for the case of sep-
aration of short utterances since permutations are solved by
using only the estimated demixing matrices. However rever-
beration and spatial aliasing makes the estimation quite sen-
sitive to errors.
In this work we present a new method able to estimate mul-
tiple TDOAs, which is robust both to spatial aliasing and to
reverberation even for high T60. A novel transform of the
state space associated with the separation matrices is formu-
lated. This transform, which will be called State Coherence

Transform (SCT), jointly exploits states associated with all
the sources and thus is invariant to permutations. By using
the SCT, without requiring any knowledge of the maximum
distance between microphones, we generate envelopes with
clear peaks corresponding to the TDOAs of the sources. In
the following section a physical interpretation of the sepa-
ration matrix W(f) is recalled. The novel SCT transform
is presented and its permutation-invariance property is then
explained. Furthermore it is demonstrated that the SCT is
a generalization of the GCC-PHAT [2] for the multidimen-
sional case. Finally experimental results, reported in section
5, confirm that the proposed method can solve the permuta-
tion problem under challenging conditions allowing the sepa-
ration of short utterances in highly reverberant environments.

2. PHYSICAL INTERPRETATION OF W(f )

To simplify the understanding of the proposed approach we
first recall a simple physical interpretation of the separation
matrices. Assuming the sources to be under free-field condi-
tions, signals acquired through the microphones are delayed
and scaled versions of the original ones. In the frequency-
domain the observed components y(f) can be modeled as:

y(f) = H(f)x(f) (1)

where H(f) is a complex-valued matrix and x(f) are the fre-
quency components of the original signals. In the frequency-
domain BSS each frequency component is separated by es-
timating a separation matrix W(f). In our earlier work [3]
we showed that, in the case of two microphones, the ratios of
the rows of W(f) are scaling invariant and can be viewed as
observations of the propagation models associated with each
source. In general the observations of the propagation models
can be obtained by the ratio of the columns of W(f)−1, which
can be viewed as an estimate of H(f), up to a permutation and
scaling ambiguity:

rk(f) =
w−1

ak

w−1
bk

= |rk(f)|e−j2πf∆tk (2)

where k is the index of the source, w−1
ik are the elements of

the demixing matrix W(f)−1, and ∆tk is the observed TDOA
for the k − th source with respect to the chosen microphone
pair a − b. Each ratio depends on the frequency and on the
TDOA and thus can be considered as a state associated to
each source. If we assume that the permutation problem is



solved, using states associated with different frequencies, it
is possible to estimate the TDOA for each source. This ev-
idence was exploited in [1] to group the frequency compo-
nents using an effective estimation of the propagation model
parameters. Such a method estimates the parameters for the
frequencies where the spatial aliasing does not occur, group-
ing the states belonging to the same source, according to a
procedure similar to k-means. After that, it recursively solves
the permutations for the higher frequencies refining at each
step the estimation of the model parameters. Although this
method is effective in normal situations it lacks reliability if
very short utterances are analyzed with high reverberation. In
fact, with the recursive structure of the approach, if there are
some frequency bands for which the ICA solution is not re-
liable, the model parameters are incorrectly refined and this
generates wrong permutation decisions. Thus a more reliable
estimation is needed which takes into account all the observed
states at the same time without any recursive schema.
Before presenting the formulation of the SCT we first recall
the general optimization rule that can be used to estimate the
model when the permutation does not occur. Under ideal con-
ditions the frequency-domain model of the inter-microphone
delay for a given source can be represented by:

c(f, τ) = e−j2πfτ (3)

where τ is the relative time difference of arrival between the
two microphones. Thus, assuming that the permutations have
been solved, an estimation of the TDOA associated with each
source can be performed by minimizing the following quan-
tity:

τk = argmin
τ

∫
||c(f, τ)− rk(f)||df (4)

where rk(f) are the normalized states computed as:

rk(f) =
rk(f)
||rk(f)|| (5)

Once the TDOAs (τk) and thus the model c(f, τk) are known,
the permutation alignment is a trivial step. Each frequency
component is aligned according to the permutation that mini-
mizes the following quantity:

Π(f) = argmin
Π

N∑

k=1

||c(f, τk)− rΠ(k)(f)|| (6)

where Π is a permutation of the matrix W(f) and N the num-
ber of the sources.

If the permutation problem is not solved, the state rk(f)
does not always belong to the same source and the estimation
cannot be performed directly with (4). However we will show
in the following section that, regardless of permutations, it is
possible to formulate a transform that takes into account all
the observed states and exhibits maxima located exactly at
the TDOAs related to all the observed sources.

3. STATE COHERENCE TRANSFORM

The State Coherence Transform is formulated as follows:

SCT (τ) =

Z NX

k=1

»
1− g

„ ||c(f, τ)− rk(f)||
2

«–
df (7)

where N is the number of rows of matrix W(f) and g(·) is a
function of the euclidean distance. To better understand the
behavior of the above transform, we first define an approxi-
mated SCT (aSCT) considering g(·) equal to:

g(x) = x (8)

Thus the original formula (7) can be simplified to:

aSCT (τ) =
∫ N∑

k=1

(
1− ||c(f, τ)− rk(f)||

2

)
df (9)

The aSCT will be maximized for values of τ that for each fre-
quency minimize the sum of the distances between the vector
c(f, τ) and all the observed rk(f):

d(f, τ) =
N∑

k=1

||c(f, τ)− rk(f)|| (10)

It is simple to demonstrate that for the case of N = 2 (two mi-
crophones), for a given frequency, the above distance d(f, τ)
can be minimized with the values τl that solve each equation:

||c(f, τ)− rl(f)|| = 0, ∀l = 1..2 (11)

If N = 2 formula (10) becomes:

d(f, τ) = ||c(f, τ)− r1(f)||+ ||c(f, τ)− r2(f)|| (12)

For each of the values τ1 or τ2, which solve equation (11), the
distance d(f, τ) reduces to ||r1(f)− r2(f)|| since c(f, τl) =
rl(f) and thus one of the terms of (12) would be zero.
Furthermore, all the vectors have unit norm and thus, with this
geometrical constraint, for each τ there must be:

||r1(f)− r2(f)|| ≤ d(f, τ) (13)

Thus, values of τ for which the distance d(f, τ) is minimized
for most of the frequencies f , maximize the approximated
SCT in (9) and generate clear peaks in its corresponding
envelope. Such values of τ will represent the maximum-
likelihood TDOA of each source, according to the model in
(3).
For the case of N > 2 we cannot define an inequality like in
(13). For this reason the aSCT would lead to errors, since it
would be maximized even for τ values that are a linear com-
bination of the TDOAs of the sources. To solve this problem
we need a function g(·) that is able to give more emphasis to
the states rk(f) that are closer to the model c(f, τ) while it
neglects the others.
We empirically found that a sigmoid function, like the
tanh(·), gives a good non-linear transformation of the eu-
clidean distance. We can thus define g(·) as:

g(x) = tanh(α · x) (14)

where α is a positive real-valued shape factor which modifies
the inter-source TDOA resolution.
To show the effectiveness of the proposed method we con-
sider a real situation and we apply both the SCT and the
GCC-PHAT (also known as CSP [4]) in order to perform a
TDOA estimation. Two speakers, placed 2 meters away from
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(a) One active source
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(b) Two active sources

Fig. 1. Comparison between the SCT (solid line) and GCC-
PHAT (dashed line) envelopes.
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(a) states rk(f) and estimated mod-
els c(f, τk) (black lines)
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(b) SCT profile of the state rk(f)

Fig. 2. Plot of the states rk(f) and its SCT transform for a
real test.

the array and with an angular distance of about 40◦, have been
recorded using two microphones, spaced at 20 cm, in a room
with a T60 of about 700ms. For the SCT the demixing ma-
trices, and thus the states rk(f), are obtained using the algo-
rithm presented in [3] using just one second of data and an
FFT window size of 4096 taps. The GCC-PHAT is computed
by framing and averaging FFT windows of 4096 taps, over-
lapped of 3840 taps. The values of τ for which the SCT is
computed are chosen in order to have a theoretical spatial res-
olution of 1◦. The GCC-PHAT is interpolated with a factor of
10 to have a comparable resolution. In both cases signals are
sampled at Fs=16kHz and the envelopes are normalized to 1.
In figure 1 we compare the envelopes obtained by using the

SCT (solid line) and the GCC-PHAT (dashed line) when one
and two sources are active, respectively. In the first case both
envelopes exhibit a peak located almost at the same position
and this confirms that the SCT leads to similar results as the
GCC-PHAT does when just one source is active. In the sec-
ond case the GCC-PHAT is not able to detect the secondary
peak whilst the SCT exhibits clear peaks corresponding to the
TDOAs of the two sources (expected to be about -0.2 and +0.2
ms). In figure 2 we can observe the plot of the phase of the
states rk(f) and the profile of the SCT transform. The black
lines represent the models c(f, τk) estimated for each source
where τk are the TDOA selected by means of the peaks of
the SCT envelope. It is worth noting that such lines accu-
rately approximate the states rk(f) and thus, as we expected,
the values τk are reliable estimations of the TDOA of each
source and can be effectively used to solve the permutation
problem according to the rule in (6). In figure 3 the SCT
envelopes for the case of N = 4 sources are plotted. Two dif-
ferent values of α have been chosen in order to demonstrate
that the non-linear mapping can effectively increase the res-
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(b) α = 10

Fig. 3. SCT envelopes computed for the case of N = 4
sources, using different values of α.
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(a) c(f, τk) re-estimated with a re-
cursive approach similiar to [1]
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(b) c(f, τk) estimated by means of
the SCT peaks

Fig. 4. Phase-frequency plot of the states rk(f) and of the
estimated models c(f, τk) (black lines).

olution between the sources. Finally, figure 4 shows that a
recursive re-estimation like in [1] is not always able to con-
verge to a correct TDOA estimate whilst the SCT, exploiting
all the frequencies at the same time, provides a stable result.

4. CONNECTIONS BETWEEN SCT AND GCC-PHAT

When just one state observation is available, the aSCT is
equivalent to the GCC-PHAT. To simplify the notation the
aSCT can be modified using the squared distance between
the model c(f, τ) and the state rk(f) without changing the
meaning of the obtained envelopes. Thus for the case of
N = 1, (9) becomes:

aSCT (τ) =
∫ (

1− ||c(f, τ)− r1(f)||2
2

)
df (15)

By a simple mathematical manipulation it can be written as:

aSCT (τ) =

Z „
1− [c(f, τ)− r1(f)][c(f, τ)− r1(f)]∗

2

«
df

=

Z
(Re[c(f, τ)∗r1(f)]) df (16)

Using the signals observed with a pair of microphones, the
GCC-PHAT is computed as:

GCC − PHAT (τ) =
∫ (

x1(f)x2(f)∗

||x1(f)x2(f)∗||
)

ej2πfτdf

(17)
where x1(f) and x2(f) are the Fourier transforms of the sig-
nals recorded by the first and the second microphone, respec-
tively. Under ideal conditions each microphone observes a



delayed version of the original acoustic wave according to
the position of the source. So for each frequency the prod-
uct x1(f)x2(f)∗ can be rewritten as:

(x1(f)x2(f)∗) = |x1|e−j2πfT1 |x2|ej2πfT2

= |x1|e−j2πfT1 |x2|e[j2πf(T1+δτ)]

= |x1||x2|ej2πfδτ (18)

where δτ is the relative TDOA and T1 and T2 are the time of
arrivals (TOA) of the direct wave front recorded by the mi-
crophones 1 and 2, respectively. Thus (17) can be simplified
to:

GCC − PHAT (τ) =
∫

ej2πfδτej2πfτdf (19)

The first exponential has the same meaning as the observed
state r1(f) since it represents the sound propagation model
from the source to the two microphones. It is worth noting
that PHAT normalization has a similar effect as the state nor-
malization in (5). The second exponential instead is exactly
the conjugate of c(f, τ). So without losing any generality (17)
can be rewritten as:

∫
c(f, τ)∗r1(f)df (20)

The only difference between (20) and (16) is the Re[·] oper-
ator and the two formulas in our problem are equivalent. In
fact the integral in (20) is maximized for values that minimize
the phase difference between c(f, τ) and r1(f). For such val-
ues the imaginary part goes to zero and thus it is equivalent
to consider just the real part as in (16).

5. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of the proposed
method the SCT transform was applied to the recursive FD-
BSS, presented in [3]. That algorithm is able to intrinsically
solve the permutations when spatial aliasing does not oc-
cur. In this work however we use widely-spaced array and
the permutation problem is solved by a posterior alignment
according to the estimated TDOAs and the optimization in
formula (6). The algorithm has been implemented both in
Matlab and in C++ and is able to work in real-time with two
sources. The ICA step is realized by means of the Scaled
Infomax proposed in [5]. The algorithm has been applied
to separate two sources with an angular distance of 45◦,
placed about 1.1 meter away from the array. The distance
between the microphones was 25 cm and the test room has a
T60 = 700ms. The sampling frequency is Fs=16kHz and the
length of the demixing filters has been chosen between 4096
and 8192 taps according to the training window size. Per-
formance is evaluated according to the Signal-to-Interference
Ratio (SIR). SIR values are computed using the whole signals
(length of about 9s) but the demixing filters are computed us-
ing different training window sizes. The reported SIR is the
average value over all the separated sources. Audio samples
of the original and separated signals are available at [6].
As shown in table 1, high separation performance has been
obtained in highly reverberant environment and with very
short utterances (6 dB with just 500 ms of data and 7dB

training window size (s) 0.5 1 2 4 9
Proposed (dB) 6.01 7.02 7.94 10.9 11.5
Parra’s (dB) 1.41 2.39 2.69 2.8 2.95

Table 1. SIR performance comparison

with 1 second of data). A comparison with the time-domain
Parra’s method [7] is also provided. Performance confirms
that using frequency-domain methods, if the permutation
problem is effectively solved, good results can be obtained
even under challenging conditions.

6. CONCLUSIONS

In this paper a robust solution to the permutation problem
was presented, which uses a joint-multiple TDOA estimation
of the sources. The method performs a non-linear transfor-
mation of the state-space based on its frequency coherence.
Experimental results show that the approach can be success-
fully applied to solve the permutation problem even under
challenging conditions. Furthermore, since permutations are
solved without using any information of the non-stationarity
of the signals, the method is stable even when using short ut-
terances and long FFT windows to cope with high T60.
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