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ABSTRACT

Hands-free voice control is an attractive solution for interaction in
the medical environment. Considerable improvements in imaging
technology have led to a continuously increasing demand for effi-
cient methods for the manipulation of electronic images in medi-
cal applications. However classical interaction modalities, like re-
mote control/mouse/keyboard, are either inadequate or impractical.
To match the clean close-talk conditions where the speech engine is
trained, microphone array processing is required. This paper pro-
poses a robust speech enhancement scheme, for a hands-free voice
control system for a medical X-ray application. This scheme com-
bines microphone array processing and preprocessing in the speech
engine into a single front-end, resulting in optimal accuracy. Ar-
tificial acoustical conditions as well as one realistic condition are
investigated, to assess the feasibility of hands-free voice control for
this application. The proposed solution enables the doctor to focus
on the patient and images while interacting with medical equipment.

Index Terms— Voice control, speech recognition, beamform-
ing, microphone array, noise suppression

1. INTRODUCTION

Voice recognition has become a widely accepted solution for con-
trolling medical equipment. Often, it is the only feasible option in
hands-busy situations or in environments where sterility is a priority.
Other advantages of voice control are an increased freedom of user
movement and the elimination of repetitive motions that would be
needed for manual control.

Conventional voice control systems, however, have several
shortcomings. In order to guarantee robust performance, it is neces-
sary to place the microphone close to the mouth of the speaker. This
requires the user to either wear a headset or use a clip-on micro-
phone, which is often experienced as inconvenient and impractical,
especially during procedures that may last for several hours. Mi-
crophone wiring or, alternatively, the implementation of a reliable
wireless transmission system, can cause other practical problems
when a close-talk microphone is used.

Deployment of a distant-talk microphone eliminates the need to
wear a microphone and to establish a connection - wired or wire-
less - between the user and the device. However, in this case the
microphone not only picks up the desired speech signal but also in-
terfering signals such as background noise, sounds generated by the
device itself, and speech signals that are not intended for controlling
the device. In most cases, this will deteriorate the performance of
the speech recognizer to an unacceptable level.

An array of microphones and adequate processing of the signals
picked up by the microphones can improve the quality of the desired
speech signal such that a speech recognizer can work properly. An

appropriate combination of the microphone signals results in spatial
filtering which suppresses all sounds coming from other directions
than the desired speech signal. In this way, the speech signal control-
ling the device is enhanced and in many cases, the resulting signal is
comparable to the output of a close-talk microphone.

After a short description of automatic speech recognition (ASR)
in Section 2, the general challenges regarding robustness are de-
scribed. In Section 3 we propose a solution scheme that we tested
in practice. The evaluation of the implementation of this solution
is given in Section 4. The solution proved to be robust against the
acoustical changes in the examination room. Conclusions are drawn
in Section 5.

2. AUTOMATIC SPEECH RECOGNITION

A system for automatic speech recognition typically consists of two
stages: training and recognition. A model of speech production is the
binding factor between these stages. A well-known choice of model
for continuous speech recognition systems is based on the Hidden
Markov Model (HMM), which is typically used for capturing the
time-varying characteristics of phonemes. The collection of HMMs,
corresponding to the different phonemes, describes the acoustical
model. The parameters of the acoustical model are estimated during
the training phase. In the recognition stage, the HMMs are concate-
nated according to the phonetic transcription provided in a lexicon
of a word to construct a model of the complete word. The task of
the recognition engine is then to estimate the most likely sequence
of words that was spoken, given a segment of speech signal.

The robustness of a speech recognition system depends on sev-
eral factors, a number of which are discussed below. The perfor-
mance of command- and control-style applications is often indicated
on two axes: the accuracy and the false-alarm rate. These are derived
from the types of errors that can occur:

substitution A command was spoken intentionally to the system,
but the system recognized it as another command.

deletion A command was spoken intentionally to the system, but the
system ignored it.

insertion No command was spoken to the system, but the system
recognized a command anyway.

The accuracy of a system is measured by the amount of substitutions
and deletions, while the false-alarm rate is measured in number of in-
sertions per hour of operational system listening time. Mismatch be-
tween the speech material used during training and the speech signal
encountered during recognition is the major cause of substitution and
deletion errors. Insertion errors on the other hand are mainly caused
by so-called out-of-vocabulary speech, and non-stationary noise.
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Fig. 1. Block diagram of the signal processing front-end: HPF: High-pass Filter; GSC: Generalized Sidelobe Canceller; FFT: Fast Fourier
Transform; VAD: Voice Activity Detector; MFCC: Mel-Frequency Cepstrum Coefficients.

Difference between the acoustical conditions in which the train-
ing material was recorded and the conditions in which the recognizer
is deployed can severely affect the recognition performance. The
difference can often be attributed to the presence of noise and rever-
beration of the desired speech signal. The combined disturbances
give rise to a nonlinear distortion in the speech feature domain, and
consequently the features calculated from the noisy speech signal
do not match the feature distributions contained in the acoustical
model very well. In this paper we consider only speaker indepen-
dent speech recognition and focus on the acoustic mismatch caused
by the environmental acoustical conditions.

3. PROPOSED SOLUTION

In this section, we discuss the front-end of the hands-free system.
The front-end is responsible for providing the speech recognition
engine with a noise-free speech signal containing only the desired
speech. The front-end does not feed a time-domain signal to the rec-
ognizer, but it computes features that ideally retain all information
necessary for recognizing speech, while leaving out any unwanted
information such as differences among speakers or background noise
characteristics. Fig. 1 shows a block diagram of the signal process-
ing front-end. The individual blocks in the processing chain are de-
scribed in the following sections.

We use a linear array of length 30 cm, see Fig. 2, consisting of
4 microphones which we found to be a good compromise between
performance and complexity. We make use of the total length of the
array at low frequencies while minimizing spatial aliasing at high
frequencies. All microphone signals are high-pass filtered before
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Fig. 2. Array configuration.

they are fed to the beamformer. This removes any DC offset and
low-frequency noise. Calibration is used to compensate for gain dif-
ferences between the individual microphone signals. These differ-
ences may stem from production tolerances, which can reach up to�

4 dB for cheap microphones, and from differences in the settings
of the channels of the analog pre-amplifier.

3.1. Audio Tracking

The audio tracker uses two of the four microphones to detect the
angle at which the user is speaking. Different audio localization al-
gorithms can be used, a detailed description of the algorithms can be

found in [1], Chapter 4. The angle determined by the audio tracker
can be used in different ways, depending on the implementation. It
can be used by the beamformer to focus on the location of the de-
sired speaker. In this case it must be guaranteed that the angle deter-
mined by the audio tracker correctly corresponds to the direction of
desired speech. This could be done by speaker identification or by
face recognition. In the medical scenario that we addressed, namely
cardiovascular X-ray, the user is at a more or less fixed but unknown
position because he/she is inserting a catheter into the patient. In
this case, the position of the user can be determined from e.g. an ac-
tivation command. The angle of any sound source detected by the
audio tracker is then compared against this angle. The current angle
of the sound source can also be used by the voice activity detector
if the location of the desired speaker is known. In this case, any
sound coming from a direction other than that of the desired speaker
is identified as undesired and can be suppressed.

3.2. Generalized Sidelobe Canceller (GSC)

The structure of the beamformer is shown in Fig. 3. It is a gener-
alized sidelobe canceller [2, 3] with a beamformer adapting to the
sound source and an adaptive noise canceller � , implemented as
a multi-channel frequency domain adaptive filter. The beamformer
generates a primary output signal containing the desired signal � ,
and a set of noise references � that are fed to the noise canceller
to cancel the remaining noise in the primary signal. The noise ref-
erences � or, alternatively, the output signal of the noise canceller� are also used in the spectral post-processor discussed in Subsec-
tion 3.3. More information on beamforming and implementations
can be found in [2, 3, 4, 5, 6, 7].
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Fig. 3. Structure of the GSC.

3.3. Spectral Processing

A pre-emphasis filter (Fig 1) compensates for the natural attenuation
of higher frequencies of voiced sections of speech. It is implemented



as a first order finite impulse response filter:��������� � ��������� � ��� �"!#�%$&�('*) +�$#!-,/.
This filter is applied to the output of the beamformer as well as to
the noise references � and to the output � of the noise canceller �
for use in the spectral post-processor.

The time-domain signals, beamformer output, noise references
and noise canceller output are transformed to the spectral domain by
windowing overlapping blocks of input data with a Hamming win-
dow and computing an FFT. Only the magnitudes of the FFT coef-
ficients are used in further processing. The spectral post-processor
enhances the performance of the beamformer by increasing the sup-
pression of interferences provided by the noise canceller � . It is
based on spectral subtraction [8, 9] and it uses either the output of
the noise canceller � or the noise references � from the blocking
matrix 0 as an estimate of the interference. In the case that the noise
references are used, the magnitudes of the FFTs of the different ref-
erence signals are summed in order to obtain a single interference
estimate.

The postprocessing uses noise floor estimations based on mini-
mum statistics. The noise estimation parameters, together with noise
gain limitations and smoothness parameters need careful tuning for
the specific recognizer to obtain optimal accuracy results. In this pa-
per, we used default parameters and focused on the question whether
the front-end leads to consistent improvement independent of the
choice of the speech engine.

3.4. Voice Activity Detection (VAD)

Voice activity detection tries to separate time periods that contain
potentially useful speech from all other periods. Only when voice
activity is detected, should the input signal be passed on to the rec-
ognizer. Using a voice activity detector has two advantages: first, the
computational complexity is decreased by recognizing speech only
during periods of speech activity. Second, the risk of false recogni-
tions is reduced by blocking out noise or undesired speech.

Our VAD is based on the detection used in the speech recogni-
tion system Phicos developed by the former Philips speech recogni-
tion research group in Aachen, Germany [10], which is based on two
criteria: signal-to-noise ratio (SNR) and direction of arrival (DOA)
of the sound source. The SNR is measured after the spectral post-
processor and the DOA is provided by the audio tracker. The DOA
can of course only be used as a criterion for the VAD if the location
of the desired speaker is known.

Note that a VAD for speech recognition is usually not required to
indicate speech activity per input frame, but it should assign speech
activity to entire speech utterances which might consist of several
words. Usually it is also required that the VAD opens some time be-
fore the utterance starts and only closes some time after the utterance
has finished. This means that the VAD introduces some delay which
may conflict with delay constraints of real-time systems.

In general, after applying the VAD, the signal is converted to the
time-domain and fed into the speech engine. For Phicos, we disable
the processing front-end of the engine and apply the feature extrac-
tion in the enhancement front-end directly after the VAD. Combining
the preprocessing of the speech engine and the postprocessing leads
in general to better recognition accuracy and avoids double enhance-
ment.

3.5. Feature Extraction

In the feature extraction block, the frequency-domain data is trans-
formed to features used by the speech recognizer. For the majority of

state-of-the-art recognizers these features and possibly their deriva-
tives over time. MFCCs are computed by reducing the frequency
resolution of the FFT coefficients according to a mel scale1 by ap-
plying a filter bank to the FFT coefficients. Each output channel
of the filter bank is determined by computing a weighted sum of a
number of FFT bins:

132 �54�687:9;6=<�>?
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where
132

is the output of the FON�P filter bank channel, Q 2 is the
number of frequency bins that are combined in this channel, R 2 is
the index of the lowest input frequency bin covered by this filter bank
channel, D @ is the S N�P FFT frequency bin of the input vector, C 2@ is
the S N�P element of the weighting function function of channel F , andJ is the number of filter bank channels. We use triangular weighting
functions. These triangular weighting functions are spaced evenly on
a mel scale and are usually overlapping. The MFCCs are computed
by taking the logarithm of the output signals of the filter bank and
applying a discrete cosine transform (DCT) as shown in Fig. 4.

Filter
bank Log DCT MFCC

Fig. 4. MFCC Feature extraction from FFT coefficients.

4. EVALUATION

In this section we evaluate the effectiveness of the various signal en-
hancement steps of the scheme in Fig. 1. A comparison is made
between applying no preprocessing but directly feeding the micro-
phone signal to the engine (none), and the enhancements with the
Beamformer (BF), the GSC, and the GSC combined with noise sup-
pression (NS).

Various collections of speech material were gathered. In this pa-
per we consider three of them. We recorded own data sets for the
evaluation, named LAB, LAB-N and LAB-R. All these collections
concern fairly simple command and control recognition tasks, us-
ing US English vocabularies. The command sets were recorded at
various locations under varying noise conditions. The LAB data set
represents office conditions where stationary noise from computer
cooling fans is present. The reverberation time T�UWV was estimated at
400 ms. The microphone array was positioned approximately 1.5 m
from the ground. The commands were spoken by eight non-native
speakers of US English, whose positions/directions from the micro-
phone array ranged from 1.2 m to 2.0 m / -45 X;YBZ to 45 X;YBZ .

The LAB-N data set is recorded in a hospital. The doors of
the cabinets where the X-ray equipment was running were left open
which increased the noise levels. Furthermore, background babble
noise was present during recording. The recording scenario is simi-
lar to the LAB data.

The LAB-R data set represents a real-life scenario. The voice
commands are given by the clinician, who is also occasionally talk-
ing to several other clinicians at the table side. Conversations with

1The mel scale attempts to map the perceived frequency of a tone onto a
linear scale: []\*^#_#`#_:acb#d�e V�fhg�ikj;l#mBn#npo , where [ is the frequency in mel
and j is the frequency in Hz.



Table 1. Performance on the clean LAB dataset.

Phicos C1 C2 MS6.1
none 92% 93% 88% 70%
BF 95% 95% 91% 80%
GSC 97% 95% 92% 83%
GSC+NS 96% 95% 93% 67%

the patient and between clinicians occur as well, with a few occur-
rences where the clinicians talk to people in the control room. The
reverberation time q�rWs was estimated to be 550 ms. Due to the short
distance (approximately 1 m) between clinician and microphones,
the recognition is not expected to be significantly affected by speech
reverberation.

We considered four speech engines: Phicos, C1, C2, and MS6.1.
Phicos [10] is a continuous speech recognizer developed at Philips
Research Aachen. It is a research tool used in the development of
new algorithms for speech recognition. C1 and C2 are commercially
available speech recognition engines, both supporting command and
control applications. Various versions of the Microsoft Speech Rec-
ognizer exist, and are bundled with e.g. Microsoft’s Speech SDK 5.1
(version 5.1), Office 2003 (version 6.1), and Windows Vista (version
8). We used version 6.1.

We note that no specific parameter tuning is applied to the differ-
ent combinations of the algorithms with speech engines. The recog-
nition accuracy on data set LAB is given in Table 1. Linear spatial
filtering with the beamformer and GSC provides consistent improve-
ments across all engines in terms of accuracy. Improving the SNR
can lead to an increase in insertion errors, as we have observed dur-
ing experiments. The spectral postprocessing does not prove to be
very useful for the low noise LAB dataset, which can be attributed
to the introduced signal distortion.

Table 2. Performance on the LAB-N dataset with various enhance-
ment techniques.

Phicos C1 C2 MS6.1
none 19% 54% 74% 25%
BF 48% 75% 87% 40%
GSC 72% 81% 86% 56%
GSC+NS 81% 84% 89% 67%

The improvements obtained with signal enhancement if a rea-
sonable amount of stationary noise is present (LAB-N dataset) are
given in Table 2. Very significant improvements can be observed
across all engines. The largest improvement is found for Phicos,
which could be explained by the presence of single channel noise
reduction methods in the commercial engines. The results of the var-
ious processing schemes are somewhat irregular for the C2 engine,
which suggests that the sub-optimality of the simple concatenation
of preprocessing and engine front-end are most notable here. Again,
the beamformer and GSC provide consistent recognition improve-
ments, and in most cases the spectral methods boost the performance
very significantly.

For the LAB-R the results obtained with the various processing
schemes are listed in Table 3. The most consistent improvements
are obtained for the Phicos engine. The BF and GSC furthermore
increase accuracy for the C1 and C2 engines; marginal effects are
observable for the MS6.1 engine. The spectral methods generally

Table 3. Performance on the LAB-R dataset.

Phicos C1 C2 MS6.1
none 77% 78% 57% 85%
BF 85% 85% 63% 85%
GSC 87% 86% 63% 85%
GSC+NS 89% 86% 66% 87%

give improved results, except for the C1 engine.

5. CONCLUSIONS

Substantial improvements in recognition performance can be at-
tained with the proposed solution based on acoustical beamforming.
Spatial filtering with beamforming provides consistent gains in
recognition accuracy. Methods based on spectral subtraction in gen-
eral suffer from distortion of the desired speech signal and thus are
less suitable in relatively noise-free conditions. They do however
provide very impressive results in the more noisy conditions, al-
though care must be taken when integrating such a method directly
with a complete speech recognition system, i.e. performing noise
reduction twice should be avoided.
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