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ABSTRACT

An azimuth steerable first-order superdirectional microphone
response can be constructed by combination of three eigen-
beams (monopole and two orthogonal dipoles) and applying
standard signal processing techniques. The main-lobe can be
steered to a certain angle on the 2D plane, such that the de-
sired signal is captured. Besides steering, the directional pat-
tern can be adjusted in such a way that either a point-interferer
coming from an other angle is rejected or that we get an op-
timal rejection of diffuse noise. However, when we want to
reject both a point-interferer and obtain the best possible dif-
fuse noise reduction, neither of these methods give optimal
results. In this paper, an optimal steering method is derived
to construct the first-order directional response in such a way
that the point-interferer is removed with the best possible dif-
fuse noise reduction.

Index Terms— Microphone arrays, null steering, superdi-
rective beamformer.

1. INTRODUCTION

In applications such as hands-free communication and voice
control systems, the microphone signal is corrupted by (dif-
fuse) background-noise and reverberation. To reduce the
amount of noise and reverberation, we can use a microphone
array and apply beamforming techniques to steer the main-
lobe of a beam towards the desired (speech) signal. For small
microphone arrays, where the wavelength of the sound of in-
terest is much larger than the size of the array, additive beam-
formers like delay-and-sum are not able to obtain a sufficient
directivity, as the beamwidth deteriorates for these wave-
lengths [1], [2]. A common method to obtain an improved di-
rectivity is to apply superdirective beamforming techniques.
To obtain this superdirectivity, beamforming techniques re-
quire filters with asymmetrical filter coefficients [3]. Basi-
cally, this asymmetrical filtering corresponds to subtraction
of signals, like in the delay-and-subtract techniques [4] [5] or
by taking spatial derivatives of the sound pressure field [6] [7]
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(discussed in Section 2). Although the directivity can be im-
proved by such asymmetrical filtering, it is also known that
this is obtained at the cost of robustness, such as increased
sensitivity for white (sensor) noise and an increased sensitiv-
ity for mismatches in microphones characteristics [8].

2. CONSTRUCTION OF EIGENBEAMS

We know from [7], that by using a circular array of at least
three (omni- or uni-directional microphone) sensors in a pla-
nar geometry and the application of signal processing tech-
niques, it is possible to construct a first-order superdirectional
response that can be steered with its main-lobe to any de-
sired azimuthal angle and can be adjusted to have any first-
order directivity pattern (cardioid, hypercardioid, etc.). This
construction is performed via so-called zeroth- and first-order
eigenbeams. For wavelengths larger than the size of the array1

and assuming that we have no sensor-noise, the responses of
the eigenbeams are frequency invariant and ideally equal to:��� � �
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with 
 and � the standard spherical coordinate angles: ele-
vation and azimuth. The directivity patterns of these eigen-
beams are shown in Fig. 1.
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Fig. 1. Eigenbeams (monopole and two orthogonal dipoles).

1For wavelengths smaller than the size of the array, spatial aliasing effects
will occur.



The zeroth-order eigenbeam
� �

represents the monopole
response, while the first-order eigenbeams

� �� ��
	�#��� and���! #"� ��

�#��� represent the orthogonal dipole responses.
The dipole can be steered to any angle @1A by means of a

weighted combination of the orthogonal dipole pair:�CBED� ��

�#��� �F�G�5� � @ A � � �� ��

�����IH �,��� � @ A � � �! #"� ��
	�#���.� (4)

with JLKM@ A K *N& the steering angle.
Finally, the steered and scaled superdirectional microphone

response can be constructed via:� ��

�#��� � OQP RS� � HT� � $ R � �CBED� ��
	�#���VU� OQP R HW� � $ R � �G�5� ���%$ @ A � �,�-� ��
��XU5� (5)

with
R K �

the parameter for controlling the directional pat-
tern of the first-order response and

O
an arbitrary scaling fac-

tor (which can also have negative values).
In the remainder of this paper, we will assume that we have

a unity response of the superdirectional microphone for a de-
sired source coming from an arbitrary azimuthal angle � and
for an elevation angle 
 � � " .

3. DIFFUSE NOISE

For analyzing the microphone response in the presence of
spherically isotropic diffuse noise2, we use the directivity fac-
tor Y given by [4] [5]:Y � Z &[ "#�\^] � [ �_ ] � � " ��
	�#��� ����� 
a`�
1`5�cb (6)

If we combine Eq. (5) with Eq. (6) and perform the inte-
gration, we see that the directivity factor Y is expressed as:Y � d� � $e* R H Z R " � O " b (7)

To obtain a unity desired response at angle @1A , we have to
choose

Of�g�
. The directivity index h%i �j� Jlk �!mon � � Y � is

plotted as function of
R

in Fig. 2. Here it can be seen that
for

Rp� nq we get the maximum directivity index of r dB,
corresponding to a first-order hypercardioid. For

RF� n" andRs�t�
, we get respectively the first-order cardioid and the

monopole response with respectively a directivity index hui
of Z b v and J dB.

The maximum reduction of diffuse noise is obtained forRw� nq . However, when we also want to remove a point in-
terferer coming from some other angle, choosing

Rx� nq will
not automatically yields the best result. The situations with a
single point interferer will be considered next.

2Due to the limited length of this paper, we only focus on spherically
isotropic diffuse noise. However, the results of this paper can be easily trans-
lated to the cylindrically isotropic diffuse noise case. Furthermore, we note
that reverberant acoustic fields are often modeled as spherically isotropic dif-
fuse noise.
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Fig. 2. Directivity index h%i as function of
R

.

4. SINGLE POINT INTERFERER

The first-order superdirectional response (with a unity re-
sponse at angle @lA ) has maximally two nulls on the azimuthal
plane. The angles @l| of these two nulls can be found by solv-
ing } � ��

�#��� } " � J with 
 � � " and are given by [5]:

@ | � @ Aa~��+� ���G�5��� $ R� $ R<� � (8)

where a single null is obtained for
Rw� n" and two nulls are

defined for
Rx� n" .

Next, we want to construct a directional pattern in such a
way that we obtain a unity response at angle @1A under the
constraint that a null is placed at angle @a| . To enable this
directional pattern, we use Eq. (8) to obtain the value of

R
which is given by [4]:R'� �G�5� � @ | $ @ A ��G��� � @ | $ @ A �I$ � b (9)

From Eq. (9), it can be seen that the value of
R

becomes
more negative when the angular difference between @ | and@ A is smaller. In the limiting case where @ | is equal to @ A ,
we obtain

R�� $c� .
For this simple null-steering scheme (hereafter called the

baseline method), it is also useful to look at the directivity
factor for spherically diffuse noise, as given in Eq. (6). The
directivity factor be computed by combining Eq. (9) with Eq.
(7). In this way, we get:

Y � d P�� $ ����� � @ | $ @ A �XU "� H d ����� " � @ | $ @ A � b (10)

Fig 3 shows the directivity index h%i as function of @ | $@ A , where it can be seen that for @ | $ @ A � ~ � b � � rad. a
hypercardioid is obtained with a directivity index of 6 dB.



Furthermore, for the limit-case of @ | � @ A , the directivity
index goes to $c� dB. For @ | $ @ A � ~ & rad. a cardioid
response is obtained with a directivity index of 4.8 dB.
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Fig. 3. Directivity index h%i as function of @l| $ @lA .
As the baseline method does not have a very good direc-

tivity index for } @ | $ @ A } � � " , we propose an alternative
method as discussed hereafter.

5. POINT INTERFERER WITH DIFFUSE NOISE

To obtain the best possible directivity factor Y under the con-
straints that we obtain a unity response at an angle (hereafter
defined as �@ A ) and a null is obtained at another angle @ | , it is
generally not optimal (in terms of maximizing the directivity
factor Y ) to steer the main-lobe (with unity response) to �@ A
(as was done for the baseline method). Therefore, hereafter,
we will use the angle @ A and scale-factor

O
as extra degrees of

freedom to optimize the directivity factor under the constraint
that a unity response is obtained at angle �@ A .

Via Eq. (5), we can see that a unity desired response at
angle �@aA is obtained when we choose the scale-factor

O
as:Oe� �R HT� � $ R � ����� � �@ A $ @ A � b (11)

In the same way as in the previous section, we can chooseR
in such a way that a null is obtained at angle @ | :R�� ����� � @�| $ @lA ��G�5� � @ | $ @ A ��$ � b (12)

Combining Eq. (12) and Eq. (11) with Eq. (7) yields:Y �sd P �G��� � �@ A $ @ A �l$ ����� � @ | $ @ A �VU "� H d �G�5� " � @�| $ @lA � b (13)

We can compute the extrema of Eq. (13) by taking the
derivative with respect to @ A and setting the resulting deriva-
tive to zero. The maximum directivity factor Y is obtained

for two solutions of @ A :
@lA � @�| $�* �!� �G� � ��� � $ ����� � @ | $ �@ A � ~�� �Z �,�-� � @ | $ �@ A � � � (14)

with:� ������� " � �@lA $ @�| ��H � r �,�-� " � �@lA H @�| ��$e* ����� � �@�A $ @�| �H � $ r Z �G�5� � �@lA � �G��� � @�| � �,��� � �@lA � �,��� � @�| � b (15)

Although these two solutions of @ A are different, and lead
to different values of

R
and

O
, the directional responses are

exactly the same.
For the newly proposed method, the directivity index h%i

is shown as function of @ | $ �@ A in Fig. 4. Comparing this
plot with Fig. 3 of the baseline method, it can be seen that the
newly proposed method always leads to equal or better results
for any value of @l| $ �@�A . Especially when } @l| $ �@lAN} � � " , the
newly proposed method has a much better directivity index
compared to the baseline method.
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Fig. 4. Directivity index h%i as function of @ | $ �@ A .
It is interesting to note that just as for the baseline method

(shown in Fig. 3) for @ | $ �@ A � ~ � b � � rad. the maximum is
obtained at 6 dB (hypercardioid) and for @ | $ �@ A � ~ & rad.
the maximum is obtained at 4.8 dB (cardioid).

6. VALIDATION

To compare the newly proposed steering method, discussed
in Section 5 with the baseline method, discussed in Section 4,
we constructed the directional responses for both cases when
obtaining a unity desired response toward 90 degrees and pre-
serving a null at respectively the angles -30, 0, 30 and 45 de-
grees.

For the baseline method, we obtain the values as shown (in
bold) in Table 1. For this case, the steering angle @ A is always



equal to the angle where we want to obtain a unity desired
response. Furthermore, the scale factor

O
always equals unity.

When @�| becomes closer to the steering angle @1A , the value
of
R

decreases and also the directivity index becomes worse.
For the newly proposed method, we obtain the values as@�| [deg] @lA [deg]

O R h%i
-30 90 1 0.333 5.86
0 90 1 0 4.78

30 90 1 -1 -3.68
45 90 1 -2.372 -9.88

Table 1. Computed values for the baseline method.@ | [deg] �@ A [deg] @ A [deg]
R O h%i

-30 90 83.4 0.284 1.005 5.95
0 90 104.0 0.195 1.025 5.74
30 90 128.2 0.125 1.231 3.86
45 90 140.9 0.093 1.504 1.94

Table 2. Computed values for the newly proposed method.

shown (in bold) in Table 2. In contrast to the baseline method,
the angle @ A is different compared to the angle where we want
to obtain a unity desired response. Furthermore, it can be seen
that

R�� J for all cases, leading to improved values of the
directivity index h%i . The polar-plots for the baseline method
and the newly proposed method are shown in Fig. 5.
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Fig. 5. Azimuthal polar-plots for the baseline method
(dashed) and the new method (solid) will nulls placed at (a)
-30 degrees, (b) 0 degrees, (c) 30 degrees and (d) 45 degrees.

From the plots in Fig. 5, it is clear that when the angle be-
tween the desired source and the interfering source is small
(e.g. in Fig. 5d), the newly proposed method has a much
better directivity index. For the newly proposed method,

the directivity pattern generally has an asymmetric behaviour
around the desired angle �@ A . For the baseline method, a sym-
metric behaviour around the desired angle @1A is visible, but at
the cost of a large maximum response at angle @1A ~ & in caseR�� J , resulting in degradation of directivity index (and also
amplification of sensor-noise). Via Eq. (5), it can be derived
that this maximum response equals

O � � $�* R � for
Rx� J .

7. CONCLUSIONS

In this paper, a new technique is presented that enables the
steering of a first-order superdirectional microphone response
toward a desired angle to capture a target signal, while pre-
serving a null located at a predefined angle to suppress an
interfering signal. The main benefit of the new technique
(over standard null-steering schemes) is that the response for
(spherical isotropic) diffuse-noise is also minimized. Espe-
cially when the angle between the target signal and the inter-
ferer signal is small, the new technique is superior compared
to the standard null-steering method.
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