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ABSTRACT

In this paper, we propose a method for solving the permu-
tation problem of frequency domain blind source separation
(BSS) when the number of source signals is large, and the
potential source locations are omnidirectional. Geometric
information such as direction of arrival is helpful for solving
the permutation problem, but the information becomes more
uncertain as the number of source signals increases. When
we use a linear microphone array, we cannot obtain reliable
geometric information due to the ambiguity and sensitivity
inherent to the array geometry. We propose a combination
of small and large spacing microphone pairs that have vari-
ous axis directions. Experimental results show that the pro-
posed method can separate a mixture of speech signals that
come from various directions, even when some come from
the same direction.

1. INTRODUCTION

Blind source separation (BSS) is a technique for estimat-
ing original source signals using only observed mixtures.
When the source signals aresi(t)(i = 1, ..., N ), the signals
observed by microphonej arexj(t)(j = 1, ..., M), and the
separated signals areyk(t)(k = 1, ..., N ), the BSS model
can be described as:xj(t) =

∑N
i=1(hji ∗ si)(t), yk(t) =

∑M
j=1(wkj ∗xj)(t), wherehji is the impulse response from

sourcei to sensorj, wkj are the separating filters, and∗ de-
notes the convolution operator. A convolutive mixture in
the time domain is converted into multiple instantaneous
mixtures in the frequency domain. Therefore, we can ap-
ply an ordinary ICA algorithm [1] in the frequency domain
to solve a BSS problem in a reverberant environment. Us-
ing a short-time discrete Fourier transform, the model is
approximated as:X(ω, n) = H(ω)S(ω, n), where,ω is
the angular frequency, andn represents the frame index.
The separating process can be formulated in each frequency
bin as: Y(ω, n) = W(ω)X(ω, n), where S(ω, n) =
[S1(ω, n), ..., SN (ω, n)]T is the source signal in frequency
bin ω, X(ω, n) = [X1(ω, n), ..., XM (ω, n)]T denotes the
observed signals,Y(ω, n) = [Y1(ω, n), ..., YN (ω, n)]T is
the estimated source signal, andW(ω) represents the sep-
arating matrix. W(ω) is determined so thatYi(ω, n) and
Yj(ω, n) become mutually independent.

The ICA solution suffers scaling and permutation am-
biguities. This is due to the fact that ifW(ω) is a solu-
tion, thenP(ω)D(ω)W(ω) is also a solution, whereD(ω)
is a diagonal complex valued scaling matrix, andP(ω) is
an arbitrary permutation matrix. We thus have to solve the
scaling and permutation problems to reconstruct separated
signals in the time domain.

There is a simple and reasonable solution for the scaling
problem:D(ω) = diag(W−1(ω)), which is obtained by the
minimal distortion principle (MDP) [2], and we can use it.
On the other hand, the permutation problem is complicated,
especially when the number of source signals is large.

2. GEOMETRIC INFORMATION FOR SOLVING
PERMUTATION PROBLEM

Many methods have been proposed for solving the permu-
tation problem, and the use of geometric information, such
as direction of arrival (DOA) and beam patterns, is one ef-
fective approach [3, 4, 5, 6]. We have proposed a robust
method by combining the correlation based method [7] and
the DOA based method [4, 5], which almost completely
solves the problem for 2-source cases [8]. However it is
insufficient when the number of signals is large or when the
signals come from a similar direction. In this paper, we pro-
pose a method for obtaining proper geometric information
for solving the permutation problem in such cases.

2.1. Invariant in ICA solution

If a separating matrixW is calculated successfully
and it extracts source signals with scaling ambiguity,
D(ω)W(ω)H(ω) = I holds. Because of the scaling am-
biguity, we cannot obtainH simply from the ICA solu-
tion. However, the ratio of elements in the same column
Hji/Hj′i is invariable in relation toD, and given by

Hji

Hj′i
=

[W−1D−1]ji

[W−1D−1]j′i
=

[W−1]ji

[W−1]j′i
, (1)

where [·]ji denotesji-th element of the matrix. We can
estimate several types of geometric information related to
source signals by using this invariant. The estimated infor-
mation is utilized for solving the permutation problem.



2.2. DOA estimation with ICA solution

We can estimate the DOA of source signals by using the
above invariant [9]. With a farfield model, a frequency re-
sponse is formulated as:

Hji(ω) = eωc−1aT
i pj , (2)

wherec is the speed of wave propagation,a i is a unit vector
that points to the direction of sourcei, andpj represents a
location of sensorj. According to this model, we have

Hji/Hj′i = eωc−1aT
i (pj−pj′ )

= eωc−1‖pj−pj′‖ cos θi,jj′ , (3)
whereθi,jj′ is the direction of sourcei relative to the sensor
pair j andj ′. By using the argument of (3) and (1), we can
estimate:

θ̂i,jj′ = cos−1 arg(Hji/Hj′i)
ωc−1‖(pj − pj′)‖

= cos−1 arg([W−1]ji/[W−1]j′i)
ωc−1‖(pj − pj′)‖ . (4)

This procedure is valid for sensor pairs with a small spacing.

2.3. Estimation of sphere with ICA solution

Interpretation of the ICA solution by a nearfield model
yields other geometric information. When we adopt the
nearfield model, including the attenuation of the wave,
Hji(ω) is formulated as:

Hji(ω) =
1

‖qi − pj‖eωc−1(‖qi−pj‖) (5)

whereqi represents the location of sourcei. By taking the
ratio of (5) for a pair of sensorsj andj ′ we obtain:

Hji/Hj′i =
‖qi − pj′‖
‖qi − pj‖ eωc−1(‖qi−pj‖−‖qi−pj′‖). (6)

By using the modulus of (6) and (1), we have:
‖qi − pj′‖
‖qi − pj‖ =

∣
∣
∣
∣
[W−1]ji

[W−1]j′i

∣
∣
∣
∣ . (7)

By solving (6) forqi, we have a sphere whose centerOi,jj′

and radiusRi,jj′ are given by:

Oi,jj′ = pj − 1
r2
i,jj′ − 1

(pj′ − pj), (8)

Ri,jj′ = ‖ ri,jj′

r2
i,jj′ − 1

(pj′ − pj)‖, (9)

whereri,jj′ = |[W−1]ji/[W−1]j′i|. Thus, we can estimate
a sphere(Ôi,jj′ , R̂i,jj′ ) on whichqi exists by using the re-
sult of ICA W and the locations of the sensorspj andpj′ .
Figure 1 shows an example of the spheres determined by (7)
for various ratiosri,jj′ . This procedure is valid for sensor
pairs with a large spacing.

3. SENSITIVITY AND AMBIGUITY IN SOURCE
LOCATION ESTIMATION

3.1. Sensitivity of DOA estimation

The BSS performance is influenced by the source signal lo-
cation. Figure 2 shows the result of a preliminary exper-
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Fig. 1. Example of spheres determined by eq.(7) (p j =
[0, 0.3, 0], pj′ = [0,−0.3, 0])
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Fig. 2. Result of preliminary experiment

0 20 40 60 80 100 120 140 160 180

θ̂(deg.)

|∆
θ̂/

∆
ar

g(
Ĥ
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Fig. 3. Sensitivity of DOA estimation

iment designed to investigate the performance for closely
located signals. We used two source signals with an inter-
angle of20◦ and varied the direction ofs1 from 10◦ to 150◦

by using sets of impulse responses in the “RWCP Sound
Scene Database [10].” The solid line indicates the actual
performance, and the dotted line indicates the performance
with optimal permutation. The actual performance deteri-
orates rapidly when the position of the source signals ap-
proaches0◦ and180◦, but the optimal permutation provides
a stable performance. This means that the reason for the de-
terioration is the failure to solve the permutation problem.

This can be explained by the sensitivity of the DOA
estimation. When we denote an error in calculated
arg(Hji/Hj′i) as∆ arg(Ĥ), and an error in̂θi,jj′ as∆θ̂,
the ratio|∆θ̂/∆ arg(Ĥ)| can be approximated by the par-



tial derivative of (4):∣
∣
∣
∣
∣

∆θ̂

∆ arg(Ĥ)

∣
∣
∣
∣
∣
≈

∣
∣
∣
∣
∣

1
ωc−1‖pj − pj′‖ sin(θ̂i,jj′ )

∣
∣
∣
∣
∣
. (10)

Figure 3 shows examples of this value for several frequency
bins. We can see that∆ arg(Ĥ) causes a large error in the
estimated DOA when the direction is near the axis of the
sensor pair. Therefore, we consider the estimated DOA to
be unreliable in such cases.

3.2. Ambiguity of estimated DOA

The estimation of DOA by using one sensor pair suffers
from some ambiguities. Linear arrays can resolve only one
angular component, and this leads to a cone of uncertainty
[11]. If we assume a plane on which signals exist, the cone
is reduced to two half-lines. However, the ambiguity of two
directions that are symmetrical with respect to the axis of
the sensor pair still remains. When the spacing between sen-
sors is larger than half a wavelength, spatial aliasing causes
another ambiguity, but we do not consider this here.

3.3. Resolving sensitivity and ambiguity

When the number of source signals increases, BSS us-
ing ICA requires the same or a larger number of sensors
than sources, and many kinds of array geometry are possi-
ble. However, if we use frequency domain BSS, we should
choose an appropriate array geometry in order to obtain and
utilize reliable geometrical information for solving the per-
mutation problem.

A linear array is inappropriate when the potential source
location is omnidirectional, because every sensor pair in the
linear array has similar sensitivity for DOA estimation, and
even when the estimated DOA is reliable, the cone of un-
certainty remains. A nonlinear arrangement of sensors is
suitable for resolving both sensitivity and ambiguity. Thus,
we propose a combination of small and large spacing sensor
pairs that have various axis directions.

By using the DOA estimation described in Sec.2.2 with
the small spacing sensor pairs that have different axis di-
rections, we can estimate cones which have various vertex
angles for one source direction. Because of the sensitivity
explained in Sec.3.1, we assume that obtuse cones are re-
liable, and acute cones are unreliable. Then, we can deter-
mine a bearing line pointing to a source direction by using
the reliable cones (Fig. 4).

Even when some signals come from the same or a simi-
lar direction, we can distinguish between them by using the
information provided by the large spacing sensor pair de-
scribed in Sec.2.3. The source locations can be estimated
by combining the estimated direction and spheres (Fig. 5).
Then, we can classify separated signals in the frequency do-
main according to the estimated source locations.

4. EXPERIMENTS

We carried out experiments for 6 sources and 8 micro-
phones using speech signals convolved with impulse re-
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Fig. 5. Combination of small spacing sensor pairs and a
large spacing sensor pair

sponses measured in a room. The room layout is shown
in Fig. 6. Other conditions are summarized in Table 1. The
experimental procedure is as follows.

First, we apply ICA toxj(t)(j = 1, ..., 8), and calculate
separating matrixW(ω) for each frequency bin. Then we
estimate DOAs by using the rows ofW−1(ω) correspond-
ing to the small spacing microphone pairs (1-3, 2-4, 1-2 and
2-3). Figure 7 shows a histogram of estimated DOAs. We
can find five clusters in this histogram, and one cluster is
twice the size of the others. This implies that these are six
source signals, and two of them come from the same direc-
tion (about 150◦). Then, we apply the estimation of spheres
to the signals that belong to the large cluster by using the
rows ofW−1(ω) corresponding to the large spacing micro-
phone pairs (7-5, 7-8, 6-5, 6-8). Finally, we can classify the
signals into six clusters.

Unfortunately, the classification by the estimated loca-
tion tends to be inconsistent especially in a reverberant en-
vironment. In many frequency bins, several signals are as-
signed to the same cluster, and such classification is incon-
sistent. We solve the permutation only for frequency bins
with a consistent classification, and we employ a correla-
tion based method [8] for the rest. The correlation based
method solves the permutation so that the inter-frequency
correlation for neighboring or harmonic frequency bins be-
comes maximized. In addition, we use the spectral smooth-
ing method proposed in [12] to make separating filters in the
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Table 1. Experimental conditions
Sampling rate 8 kHz
Data length 6 s
Frame length 2048 point (256 ms)
Frame shift 512 point (64 ms)
ICA algorithm Infomax (complex valued)

time domain from the result of ICAW(ω).
The performance is measured from the signal-to-

inference ratio (SIR). The portion ofyk(t) that comes from
si(t) is calculated byyki(t) =

∑M
j=1(wkj ∗ hji ∗ si)(t). If

we solve the permutation problem so thats i(t) is output to
yi(t), the SIR foryk(t) is defined as:

SIRk = 10 log[
∑

t ykk(t)2/
∑

t(
∑

i �=k yki(t))2] (dB).

We measured SIRs for three permutation solving strate-
gies: only the correlation based method (“C”), the estimated
DOAs and correlation (“D+C”), and the combination of
estimated DOAs, spheres and correlation (“D+S+C”, pro-
posed method). We also measured input SIRs by using the
mixture observed by microphone 1 for the reference (“Input
SIR”). The results are summarized in Table 2.

Our proposed method succeeded in separating six
speech signals. We can see that the discrimination obtained
by using estimated spheres is effective in improving the sep-
aration performance for signals coming from the same di-
rection.

5. CONCLUSION

We proposed the combination of small and large spacing
microphone pairs with various axis directions in order to ob-
tain proper geometrical information for solving the permu-
tation problem in frequency domain BSS. In experiments,
our method succeeded in the separation of six speech sig-
nals, even when two come from the same direction. The
computation time was about 1 min. for 6 s. data.
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Fig. 7. Histogram of estimated DOAs obtained by using
small spacing microphone pairs

Table 2. Experimental results (dB)
SIR1 SIR2 SIR3 SIR4 SIR5 SIR6 ave.

Input SIR -8.3 -6.8 -7.8 -7.7 -6.7 -5.2 -7.1
C 4.4 2.6 4.0 9.2 3.6 -2.0 3.7
D+C 4.5 10.8 14.4 4.5 5.4 8.8 8.1
D+S+C 12.3 5.6 14.5 7.6 8.9 10.8 10.0
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