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1. INTRODUCTION

For tele-conference systems or voice-controlled systems, the high-
quality sound capture of distant-talking speech is very important.
However, background noise and room reverberations seriously de-
grade the sound capture quality in real acoustical environments.
A microphone array is an ideal candidate for capturing distant-
talking speech. With a microphone array, the desired speech sig-
nals can be acquired selectively by steering the directivity. Accord-
ingly, a super-high directivity is necessary to reduce noise signals.

To form directivity, delay-and-sum beamformer [1] and adap-
tive beamformers [2] [3] have been proposed as the conventional
beamformers. A delay-and-sum beamformer forms the super-high
directivity to the desired signal, and an adaptive beamformer forms
null directivity to the noise signal. However, delay-and-sum beam-
formers have two serious drawbacks: the performance is not good
enough to capture the desired signal without a sufficient number
of transducers, and performance degrades in highly-reverberant
rooms. On the other hand, adaptive beamformers can form null
directivity with a small number of transducers. Furthermore, they
can form sharper directivity than delay-and-sum beamformer. Con-
sequently, adaptive beamformers are often used for the front-end
processing of ASR (Automatic Speech Recognition).

AMNOR (Adaptive Microphone-array for NOise Reduction)
[3] is an adaptive beamformer proposed by Kaneda et al. in 1986.
It promises a high quality sound-capture performance even in real
acoustic environments. S-AMNOR [4] has also proposed in IC-
SLP2002. The S-AMNOR is the modified AMNOR based on
a long time speech spectrum for capturing distant-talking speech
with high quality. However, the S-AMNOR is not so suitable tech-
nique for recognizing the distant-talking speech, because speech
has different characteristics as vowels and consonants.

Therefore in this paper, we attempt to improve the speech
recognition performance of the S-AMNOR with two adaptive fil-
ters based on vowel / consonant spectrum with phoneme identifi-
cation.

2. AMNOR (ADAPTIVE MICROPHONE-ARRAY FOR
NOISE REDUCTION)

Figure 1 shows a block diagram of an adaptive beamformer. In Fig.
1, S(ω) is the Fourier transform of the desired signal and Y (ω) is
the Fourier transform of the output signal. Gm(ω) is the acoustic
transfer function between the desired sound source and the m-th
transducer, and Hm(ω) is the frequency response of the m-th filter.
The frequency response F (ω) of the adaptive beamformer to the
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Figure 1: Block diagram of adaptive beamformer.

desired signal is represented as

F (ω) =

M∑
m=1

Gm(ω)Hm(ω), (1)

where M is the number of transducers. The concept of the adap-
tive beamformer is to minimize the output noise energy while con-
straining F (ω) to the desired frequency response.

AMNOR [3] has the constraint shown in Equation (2):

D =

∫
|1 − F (ω)|2dω ≤ D̂. (2)

where F (ω) is frequency response of adaptive beamformer to the
desired signal. This constraint achieves a maximum noise reduc-
tion while allowing a small distortion D in the frequency response
to the desired signal. The AMNOR assumes two conditions. One,
the desired sound source’s DOA (Direction Of Arrival) is known.
The others, the microphone only captures the noise signal with-
out the desired signal. The AMNOR achieves the maximum noise
reduction with a quasi-desired signal and an environmental noise
signal from the environment.

In this paper, we focus on suitable control of the admissible
distortion D̂ in the frequency response for noisy speech recogni-
tion.

Figure 2 shows a general overview of AMNOR. In Fig.2, each
VF1, AF, and VF2 is a FIR filter with M-input and 1-output. AF is
the adaptive filter, and VF1 and VF2 are variable filters that have
the same filter coefficients as AF. A quasi-desired signal s′(k) is
indispensable for designing the adaptive filter of AMNOR because
AMNOR achieves maximum noise reduction with a quasi-desired
signal and an environmental noise signal from the environment.
The quasi-desired signal s′(k) derives As′i(k − τsi) from ampli-
fier and time delay τsi, i = 1, ..., M , which is calculated subject
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Figure 2: Overview of AMNOR.

to the known desired sound source’s DOA (Direction Of Arrival).
This situation assumes the simulation where signal As′(k) arrives
from the desired sound source with known DOA to the microphone
array. In addition, the microphone only captures the noise signal
u′

Ni
(k), i = 1, ..., M (not including the desired signal), and it is

inputted in the adaptive filter AF after adding it to quasi-desired
signal As′i(k − τsi). AF controls the filter coefficients based on
e(k) as the following Eq. (3).

e(k) = As′(k − τ0) − y′(k), (3)

where τ0 is the constant delay for cause and effect. es(k) is cal-
culated by using VF2 after designing the filter coefficients by AF,
and current distortion D is derived from Eq. (4).

D = |es(k)/A|2. (4)

By comparing current distortion D and admissible distortion D̂,
amplitude A is renewed with the amplifier until D ≤ D̂. In the
above algorithm, AMNOR achieves higher noise reduction perfor-
mance in real acoustic environments.

2.1. S-AMNOR (average speech spectrum-based AMNOR)

The conventional AMNOR employed a white Gaussian signal which
has flat frequency characteristics as a quasi-desired signal for sup-
pressing a spectrum distortion of the desired signal on every fre-
quency band. However in many cases, the purpose of signal cap-
ture is limited to speech capture. Therefore, if we knew the spec-
trum characteristics of desired distant signals in advance, it may
be possible to improve the performance of AMNOR by designing
a suitable adaptive filter in the environment. Thus, the S-AMNOR
[4] regards speech as the desired distant signal and designs by
using the long time average speech spectrum for distant-talking
speech capture and recognition. The long time average speech
spectrum weight is calculated by (5).

Wsp(ω) =
1

L · N
L∑

l=1

N∑
n=1

SPl(ω;n) (5)

where L represents the number of speech (words), N represents
the number of frames, SPl(ω; n) represents the Fourier transform
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Figure 3: Spectrum of quasi-desired signal.

of speech signal spl(t), and Wsp(ω) represents the average speech
spectrum weight. The S-AMNOR consists of the quasi-desired
signal which is weighted the average speech spectrum to white
Gaussian noise.

2.2. Spectral subtraction

Spectral Subtraction (SS) [5] is an effctive method for additive
noise reduction. SS can reduce the stationary noise by subtract-
ing the long-time average noise Fourier spectrum form the Fourier
spectrum of the observed signal on the Fourier space. SS is defined
by Equation (6).

|X̂(ω)| = |Y (ω)| − α|N(ω)|, (6)

where |X̂(ω)| is the Fourier spectrum of the enhanced speech,
|Y (ω)| is the Fourier spectrum of the observed signal, |N(ω)| is
the long-time average noise Fourier spectrum and α is the reduc-
tion coefficient.

3. PROPOSED APPROACH

The S-AMNOR employed a long time average speech weighted
spectrum for a quasi-desired signal. However, speech has differ-
ent characteristics as vowels and consonants. Therefore, if the
adaptive filters for the S-AMNOR can be independently designed
based on a long time vowel and consonant spectrum instead of
the long time speech spectrum, the performance of the S-AMNOR
will be improved more effectively. Thus, we attempt to improve
the speech recognition performance with the two adaptive filters
based on vowel / consonant spectrum.

Figure 4 shows an overview of the proposed approach with
the two adaptive filters based on vowel / consonant spectrum. In
Figure 4, each V Fa, V Fv, and V Fc is FIR filter with M-input and
one-output. V Fa is an adaptive filter designed by the AMNOR
based on a white Gaussian noise as a quasi-desired signal, V Fv

and V Fc are adaptive filters designed by the proposed approach
based on an average vowel and consonant spectrum.

The vowel / consonant identification is shown as (A) and (B)
in Figure 4. The vowel / consonant identification is very impor-
tant for realizing this approach. Thus, the proposed approach con-
ducts the speech enhancement process twice. First time is the
speech enhancement with a conventional AMNOR and SS for the
vowel / consonant identification. Second time is the speech en-
hancement with the S-AMNOR by switching the two adaptive fil-
ters for vowel and consonant based on the result of the vowel / con-
sonant identification. The two-class identification for vowel / con-
sonant identification will be conducted accurately by Equations (7)
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Figure 4: Overview of proposed approach with adaptive filters
based on vowel / consonant spectrum

and (8).

if pow[NL] > A σ2, NLv = NL, (7)

else, NLc = NL, (8)

where σ2 represents a background noise energy, A represents am-
plifier (in this case, A = 10), L represents the number of speech,
Lv represents the number of vowels, Lc represents the number of
consonants, NL represents the number of speech frame, pow[NL]
represents the energy of speech frame, NLv represents the num-
ber of vowel frame on each speech (word), and NLc represents the
number of consonant frame on each speech (word). The proposed
approach is necessary to calculate the average vowel / consonant
spectrum weights in advance by Equations (9) and (10).

Wv(ω) =
1

Lv

Lv∑
lv=1

1

NLv

Nlv∑
n=1

SPlv (ω;n), (9)

Wc(ω) =
1

Lc

Lc∑
lc=1

1

NLc

Nlc∑
n=1

SPlc(ω; n), (10)

where Lv represents the number of vowels, Lc represents the num-
ber of consonants, NLv represents the number of vowel frame
on each speech (word), and NLc represents the number of con-
sonant frame on each speech (word), SPlv (ω;n) represents the
Fourier transform of vowel signal splv (t), SPlc(ω;n) represents
the Fourier transform of consonant signal splc(t), Wv represents
the average vowel spectrum weight, Wc represents the average
consonant spectrum weight. The proposed approach designs the
adaptive filters with the quasi-desired spectrum by weighting the
vowel / consonant spectrum weight (Wv and Wc) to the white
Gaussian noise. In this proposed approach, we attempt to im-
prove the performance of the conventional AMNOR and the S-
AMNOR by switching the two adaptive filters for vowel and con-
sonant based on the result of the vowel / consonant identification
as (C) shown in Figure 4.

Figure 5 shows the average vowel / consonant weighted spec-
trum for the proposed approach. The average consonant weighted
spectrum is enhanced at lower frequency bands (0-500Hz) com-
pared with the average speech weighted spectrum in Figure 3 (b).
The average vowel weighted spectrum is enhanced at lower-middle
frequency bands (0-4000Hz). Compared Figure 5 (a) with Figure 5
(b), we confirm that the average vowel weighted spectrum is more
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Figure 5: Spectrum of quasi-desired signal.
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Figure 6: Experimental environment.

enhanced than the average consonant weighted spectrum in lower
frequency bands.

4. EVALUATION EXPERIMENTS

We evaluated ASR (Automatic Speech Recognition) performance
in a real acoustic room. Figure 6 shows the experimental envi-
ronment, and Table 1 shows the experimental condition. The de-
sired distant signal arrives from the front direction (90 degrees),
and the noise signal arrives from the right directions (50 degrees).
The distance between the sound source and the microphone array
is 1.5 meters. The ASR performance was evaluated by the WRR
(Word Recognition Rate). In this paper, we conducted the evalua-
tion experiments in the condition of known sound source positions,
known vowel / consonant periods and unknown vowel / consonant
periods.

4.1. Experimental results

Figure 7 shows the ASR performance with the optimum admis-
sible distortion D̂. In Figure 7, in the condition of known vowel
and consonant periods, we confirm that if we can estimate the op-
timum admissible distortion D̂ in advance, the ASR performance
of the proposed approach improves 10-13 % compared with the
conventional AMNOR, and improves 8 % compared with the S-
AMNOR. Also, in Figure 7, in the condition of unknown vowel
and consonant periods, we confirm that if we can estimate the op-
timum admissible distortion D̂ in advance, the ASR performance
of the proposed approach improves 10-11 % compared with the
conventional AMNOR, and improves 5-7 % compared with the
S-AMNOR by the vowel /consonant identification. In addition,



Table 1: Experimental conditions

Recording conditions
Reverberation time T[60] = 0.12 sec.
Microphone array Linear type 8 transducers 2.125cm

spacing
Sampling frequency 16 kHz (Quantization: 16 bit)

Average speech spectrum weight
Speech DB ATR speech DB SetA [6]
Speech 503 sentences× 5 subjects (males)
Vowels 72128 phonemes
Consonants 54810 phonemes
Frame length 32 msec. (Humming window)
Frame interval 8 msec.

Test data (Open)
HMM IPA phoneme model [7]
Desired speech signal Speech: 216 words× 1 subject

(male)
Noise signal White Gaussian noise
SNR 0 dB, 10 dB, 20 dB

the proposed approach was always more effective than the con-
ventional AMNOR and the S-AMNOR in each SNR environment.
However, compared with the condition of known vowel and conso-
nant periods, in the condition of unknown vowel and consonant pe-
riods, the ASR performance degrades 1-3 % in higher noisy envi-
ronments (SNR=0 dB,10 dB), and improves 2 % in lower noisy en-
vironment (SNR=20 dB). This result shows two points: the vowel /
consonant filter is applied as the mismatch with phoneme periods
of captured speech, because the vowel / consonant identification
can not be achieved accurately in higher noisy environment. On
the other hand, in lower noisy environment, the vowel / consonant
identification can be achieved effective performance.

Through above evaluation experiments, we confirm that the
proposed approach with the two adaptive filters for vowel and con-
sonant is more effective than the conventional AMNOR and the
S-AMNOR. This is because a signal distortion will be reduced by
switching the two adaptive filters for vowel and consonant.

In this paper, we use vowel / consonant classification as speech
sub-categories, because the vowel and the consonant widely differ
in a spectral perspective. In addition, speech sub-categories iden-
tification performance and ASR performance may degrade to use
a lot of classification. Therefore, in future work, we would inves-
tigate optimum number of classification and more suitable speech
sub-categories from a spectral perspective. In addition, to improve
the performance, we will automatically identify the vowels and
consonants from output signal of the AMNOR by using a GMM
(Gaussian Mixture Model).

5. CONCLUSION

In this paper, we attempt to improve a performance of the con-
ventional AMNOR and the S-AMNOR by the proposed approach
based on the average vowel / consonant spectrum weights in noisy
environments. As a result of evaluation experiment in real acous-
tic environment, we confirmed that the speech recognition perfor-
mance is more improved than the conventional AMNOR and the
S-AMNOR. In proposed approach, we use vowel / consonant clas-
sification as speech sub-categories, because the vowel and the con-
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Figure 7: ASR performance

sonant widely differ in a spectral perspective. In addition, speech
sub-categories identification performance and ASR performance
may degrade to use a lot of classification. Therefore, in future
work, we would investigate optimum number of classification and
more suitable speech sub-categories from a spectral perspective. In
addition, to improve the performance, we will automatically iden-
tify the vowels and consonants from output signal of the AMNOR
by using a GMM (Gaussian Mixture Model).

6. REFERENCES

[1] J.L. Flanagan, J.D. Johnston, R. Zahn, and G.W. Elko,
“Computer-steered microphone arrays for sound transduc-
tion in large rooms,” J. Acoust. Soc. Am., Vol. 78, No. 5,
pp. 1508–1518, Nov. 1985.

[2] L. J. Griffiths, C. W. Jim, “An alternative approach to linearly
constrained adaptive beamforming,” IEEE. Trans. Antennas
Propag., vol. AP-23, no. 1, pp. 27-34, Jan 1982.

[3] Y. Kaneda and J. Ohga, “Adaptive microphone-array system
for noise reduction,” IEEE Trans. Acoust. Speech Signal Pro-
cess., ASSP-34, pp. 1391-1400, 1986.

[4] T. Nishiura, S. Nakamura, Y. Okada, T. Yamada, and K.
Shikano, ”Suitable Design of Adaptive Beamformer Based
on Average Speech Spectrum for Noisy Speech Recognition,
”, Proc. ICSLP2002, pp. 1789–1792, Sept. 2002.

[5] S. F. Boll, “Suppression of Acoustic Noise in Speech Using
Spectral Subtraction,” IEEE Trans. ASSP, Vol.ASSP-27, No.
2, pp. 133-120, Apr. 1979.

[6] K. Takeda, Y. Sagisaka, and S. Katagiri, “Acoustic-Phonetic
Labels in a Japanese Speech Database,” Proc. European Con-
ference on Speech Technology, Vol. 2, pp. 13–16, Oct. 1987.

[7] A.Lee, T.Kawahara, K.Shikano, “Julius — An Open Source
Real-Time Large Vocabulary Recognition Engine,” EU-
ROSPEECH2001, pp.1691-1694, Sept 2001.


	Page243: 243
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page244: 244
	Page245: 245
	Page246: 246


