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ABSTRACT: This paper aims to examine suitability of the 
marginal statistics based contrast function e.g. negentropy for the 
separation of convolutive speech mixtures picked up by a linear 
microphone array. For this study we choose our frequency domain 
fixed-point ICA algorithm, based on negentropy maximization of 
the independent components. This algorithm is based on the 
heuristic assumption, in accordance with the Central Limit 
Theorem (CLT), that the gaussianity of mixed speech signal is 
more than that of unmixed individual. This assumption is true for 
long segment of speech in the time domain and the same is 
expected to hold even for small segments of speech in time domain 
and for every spectral bin for frequency sub-banded speech. In this 
paper we examine this assumption by estimating spectral kurtosis 
on the frequency time series of the signal obtained by taking 
Discrete Fourier Transform (DFT) of quasi-stationary segments of 
speech. It has been found that in more than 35% of the frequency 
bins, speech signal fails to comply the CLT assumption, which in 
turn badly affects the separation performance of the fixed-point 
algorithm. 
 
1. INTRODUCTION 

 
Blind signal separation (BSS), a very hot topic of 

research among digital signal processing groups since a decade, is 
the general framework to estimate signal contribution of latent 
sources only from their observed mixtures without knowing the 
mixing process. It represents very true copy of the real world 
“Cocktail party” problem. Recently, several Independent 
Component Analysis (ICA) based algorithms, both in the time 
domain and in the frequency domain, under the general framework 
of BSS have been proposed to solve this problem. In the list of 
solutions for such separation algorithms fueled by the principle of 
statistical independence of the sources, popularly known as ICA-
based BSS algorithms, have been dominating due to emergence of 
several successful algorithms separately in the time domain and 
frequency domain or combined in both [1,2]. In such algorithms, as 
shown in Fig.1, the observed mixed signals are passed through a 
tentative initial demixing system (randomly chosen or based on 
some heuristic guess and are subject to further modification) and 
then the mutual independence among the estimated Independent 
Component (IC) signals is evaluated by some cost function, usually 
based on the statistics of the signal and candidate demixing system. 
This in turn goes on modifying unmixing system unless and until 
the cost function is not optimized for the maximum mutual 
independence among the separated components. So, 
paradigmatically, most of the ICA-based BSS algorithms show 
such functional similarity, but basic difference occurs in the choice 
of the cost function, domain of operation and the process of 
optimization. The Cost function may be based on the joint 
distribution or the marginal distribution of the signal. The most 
popular example of the first category is the  

 

 
                         Fig.1 General   framework of ICA based BSS. 
 
Kullback-Liebler divergence metric, which measures deviation 
between the joint distribution of the signal and some pre-
assumed source distribution. This cost function is statistically 
efficient and there have been development of several excellent 
algorithms based on them [1,2]. However, prior knowledge of 
source distribution is not always feasible. Second category of  
the cost functions exploit only statistical properties of the 
marginal distribution and non-gaussianity of the data and are 
statistically less efficient. A lot of algorithms using such cost 
functions have also been developed [3]. On the same line we also 
proposed such an algorithm in combination with the null-
beamformer for the separation of convolutive mixture of speech 
[4]. In this paper our aim is to check suitability of such cost 
function based algorithm for the convolutively mixed speech 
signal separation. Our proposed algorithm uses non-gaussianity 
based contrast function, e.g., negentropy of the signal, which is 
optimized by fixed-point iterative algorithm [5]. The rationale 
behind this study is many folds. First the algorithm works in the 
frequency domain on the DFT of pseudo-stationary speech 
segments. So it is essential to test compliance of the CLT by data 
in the each frequency bin. This compliance depends on the 
nature of statistical distribution of the spectral data. If the 
spectral components of speech signal have stable distribution 
they will fail to comply CLT and then such algorithms cannot be 
used to separate them. 
 
2. SPEECH SIGNAL SEPARATION 

 We consider here the case of two speakers and two 
microphones. The signal mixing and unmixing model for this 
case is shown in the Fig.2.The real world mixing model is best 
approximated by convolution of source to sensor transfer 
function and source signal. Accordingly, observed signals x1(t) 
and x2(t) at microphones are given by 
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In the frequency domain the same is represented as:    
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 The separated ICs are given by 
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Our BSS algorithm is based on higher order statistics of the 
data.It has ultimate bearings on the assumption of the CLT which 
says that unstable distribution gains gaussianity under linear 
combination. The non-gaussianity based contrast function 
negentropy J(y) has been used to ensure mutual independency 
among ICs[5]. In this algorithm sphered data X(f) in every 
frequency bin is used to learn orthonormal separation vector 
w1=[w11 w12]

T   and  w2=[w21 w22]
T  in deflationary fashion, by 

following equation: 
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where g and g’ represents 1st and 2nd order derivative of a non-
quadratic and non-linear function G, used to approximate J(y) by  

      2( ) [ { ( ) { ( )}]J y E G y E G yguassσ= − , 

              where σ  is a positive constant. 

 
(5) 

 
The learning process is stopped by deciding stopping factor 

.new oldw wδ = −  Permutation and scaling problems are resolved 
using directivity pattern method.  
 
3.WHAT IS EXPECTED FROM MIXED DATA 

 Our fixed-point algorithm is based on the heuristic 
idea, motivated from CLT, that a mixed speech signal tends to be 
more gaussian than individual signals. So the estimated signal 
can represent the independent components if these are obtained 
by non-gaussianization of the mixed signal. Thus the power to 
sieve out ICs comes in the algorithm due to validity  
of the following logical fact that  
The gaussianity of the mixed speech signal> Gaussianity of the        
independent constituent speech signals.  

If gaussianity is measured by kurtosis then the above mentioned 
logical touchstone for the data may be mathematically 
reproduced as : 
     ' '
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where Kmn(f) =Kurtosis of mixed signal at n(=1,2)th mic in the 
frequency bin f; Ksp & K’sp =Kurtosis of p(=1,2)th  independent 
source at 1st and 2nd microphones respectively. In the case if 
these mandatory conditions are not complied, algorithms based 
on marginal statistics may not be able to separate ICs. It has been 
found that the long segment of speech in time domain exactly 
comply CLT but short time segments may fail to follow CLT due 
to temporal correlation of the speech [6].  As mentioned above 
the data used in the above algorithm is frequency time series 
gleaned from N-point DFT of very short quasi-stationary 
segments of speech. Each DFT coefficient is a linear weighted 
sum of speech samples. So, they form complex normal 
distribution and thus CLT is complied [7]. The same is also 
expected from each spectral bin of the speech data. Following [8], 
it can also be shown that speech data in each frequency bin are 
Complex Circular Random Variable (CCRV), as they are 
independent of complex rotation. 
 
4. CLT TEST IN FREQUENCY BINS 

As a measure to check the obeyance of CLT condition, 
stated in eq.(6)  which is mandatory for separation,  by the 
spectral component of speech we used Spectral Kurtosis(SK). 
SK is defined as the ratio of the fourth order central moment to 
the second order moment given by 
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Following [8,9] and assuming spectral component of speech as 
CCRV simplified expression for spectral kurtosis is given by 
 

           
4 2 2

2 2

{| ( ) | }- 2 {| ( ) | }
SK(f)= .

[ {| ( ) | }]
E X f E X f

E X f
 

 
(8) 

As in our fixed point algorithm data are sphered so this equation 
further simplifies to  
 

                4SK(f)= {| ( ) | }- 2.E X f  (9) 

 Using this expression for SK, the validity of the CLT can be 
tested in each frequency bin. The important requisition for CLT 
compliance by the spectral speech data is that it must not have 
stable statistical distribution because such distributions are 
closed under linear combination [10]. In order to examine the 
nature of distribution of spectral component, χ2 tests of goodness 
of fit [11] for following three null hypotheses for complex 
valued spectral speech data have been performed (i) it follows 
Gaussian distribution, (ii) it follows Laplacian distribution, and 
(iii) it follows Generalized Gaussian distribution (GGD) with the 
estimated parameters. As a performance measure of the 
algorithm in each frequency bin we define and use Spectral 
Noise Reduction Rate (SNRR), Spectral Correlation Coefficient 
(SCRF) γ(f), and number of iterations required to reach 
convergence in each frequency bin were measured. These 
performance indices are given as follows: 
SNRR is defined as the ratio of signal power to noise power in a 
frequency bin and is given by: 
 
 
 

           
Fig.2 Convolutive mixing and demixing model for speech signal. 

               ,x h s� = ⊗   
 

            where ref11=h11⊗s1,ref12=h12⊗s2;ref21=h21⊗s1, 
                    ref22=h22⊗s2;  ⊗ represents convolution. 



              
2

10 2

{| ( ) | |}
SNRR(f)=10log .

{| ( ) | |}
S

N

E X f
E X f

 
 
(10) 

Accordingly, SNRR for the first and the second ICs are given by 
2

11 11 12 21
1 10 2

1 11 11 12 21

E{|W (f)Ref (f)+W (f)Ref (f)| }
SNRR (f) 10log

E{|Y (f)-W (f)Ref (f)+W (f)Ref (f)| }
= , 

 
(11) 

and  
2

21 12 22 22
2 10 2

2 21 12 22 22

E{|W (f)Ref (f)+W (f)Ref (f)| }
SNRR (f) 10log .

E{|Y (f)-W (f)Ref (f)+W (f)Ref (f)| }
=

 

 
(12) 

The SCRF in a frequency bin f is given by 
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5. EXPERIMENT & RESULTS 

In the experiments, we used simulated data for a two-
element linear microphone array with inter-element spacing of 4 cm. 
Voices of two speakers (male and female), at the distances of 1.15 
meters and from the directions of 30− � and 40�  are used to generate 
mixed signals x1 and x2 under the described convolutive mixing 
model. Mixed signals at each microphone were obtained by adding 
the convolved speeches ref11, ref12, ref21, ref22. These convolved 
speeches are obtained by convolving seed speech with room 
impulse response, recorded under different acoustic conditions, 
characterized by different reverberation times (RTs), e.g., RT=0 ms, 
RT=150 ms and RT=300 ms. The speech signals reaching at each 
microphone from each speaker are used as reference signals. CLT 
test was performed in each frequency bin of the mixed data w.r.t 
individual sources. Result is shown in Fig.3. It is evidenr from these 
pie–charts that spectral speech data fail to comply CLT in the every 
frequency bin. This raises question on distribution of the spectral 
component of speech. The histograms of the real and imaginary 
parts of the speech, as shown in Fig.4, look very spiky and strongly 
hints existence of Laplacianity in the distribution. The χ2- test was 
performed in every frequency bin to check it. For the GGD, first 
parameters (mean, scaling & shape) were independently calculated 
using maximum likelihood approach for the real and imaginary parts 
[12]. Shape parameter β decides the shape of the GGD, which is 
shown in Fig.5 for every frequency bin. Then χ2-test was performed 
independently on the real part and imaginary part of the frequency 
domain speech data arriving at microphone and final score was 
obtained by simply adding them. The χ2-score for the gaussian, 
Laplacian and GGD are shown in Fig 6. The χ2-test indicates that 
spectral data of speech are strongly Laplacian, as the test score is 
minimum for β<1 which hints strong Laplacianity in the spectral 
distribution. The stopping factor δ was fixed at 0.0001.Computed 
SNRR, CRF, γ(f) are shown in successive figures. These 
performance indices noticeably show poor performance of the 
algorithm in the CLT failure bins. The spectral component of speech 
does not have stable distribution, however, surprisingly it does not 
support CLT in the every frequency bin. This nature of speech data 
raises question on the efficient working of the marginal distribution 
based ICA algorithm for the separation of convolutively mixed 
speech. The number of CLT failure bins is also not strongly 
correlated with the sparcity of the spectral components. 
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Fig.4 Histogram of real and imaginary parts of speech signa from 
male speaker at Mic1. 
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    Fig.5 Estimated value of shape parameter β for individual 
signals at Mic1 [male(Right)  and female(Left)]. 
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Fig.6 χ2 score for Gaussian,Laplacian and GGD for speech  
                     signal from male speaker at Mic1. 

 
Fig.3 CLT failure bins for signals at both microphones  
          (RT=300 ms, Voices-male and female speakers) 



6. CONCLUSIONS AND FUTURE WORK 
It is concluded from the results that speech signal fails 

to comply CLT in the accountable number of frequency bins, 
despite strong Laplacianity of the spectral components. This 
compels algorithm to achieve poor separation performance in 
such frequency bins. We are investigating some methods for 
blind detection of such frequency bins so that in such bins 
separation process can be switched over to other techniques, like 
beamforming, whose functioning is independent of such 
constraint. 
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                                             (b) 
Fig.7 Spectral NRR w.r.t. CLT test for mixed signals at Mic1 
        (a) and Mic2 (b) ,(RT=300ms). 
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                                                (d) 
Fig.8 No. of iteration taken  w.r.t CLT test for mixed signals 
      at Mic1(c) and Mic2(d),(RT=300ms, speakers both male). 
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Fig.9 Spectral CRF between separated ICs w.r.t CLT test for 
          mixed signal at Mic1(RT=300ms). 
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Fig.10 Spectral CRF between separated ICs w.r.t CLT test for  
           mixed signal at Mic2(RT=300ms, speakers both male). 
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