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ABSTRACT 
 

A method of combining audio and video information 
for detecting and separating speech events in real 
environments is presented. The method is effective for 
automatic speech recognition under conditions of 
multiple sound sources. Sound localization using a 
microphone array and human tracking by stereo vision 
are combined using a Bayesian network for detecting 
speech events. Based on the detected information, the 
time and location of speech events, a maximum 
likelihood adaptive beamformer is constructed and the 
speech signal is separated from background noise and 
interference. An advantage of using the Bayesian network 
is that the scheme allows the correspondence of audio and 
video coordinates to be established with ambiguity by 
modeling a joint probability distribution. The results of 
off-line experiments in a real environment with television 
and/or music interference are presented as verification of 
the proposed scheme. 
 

1. INTRODUCTION 
 

Separation of speech events is important when an 
automatic speech recognizer is used in real environments 
affected by noise and/or interference. Various methods 
have been proposed for speech enhancement, and the 
present authors have already proposed a method of sound 
source separation based on sound localization using a 
subspace method and maximum likelihood (ML) adaptive 
beamforming [1]. This system has been applied in 
automatic speech recognition, and is considered to have 
higher noise-reduction capability than other methods in 
the environments tested, such as offices and homes. 
However, this high performance is achieved only when 
the location and timing of the speech event are provided. 
The detection of speech events itself is also important for 
automatic speech recognition in real environments. 

In this paper, a method for detecting speech events 
from multiple concurrent sound events is presented. The 
location and timing obtained from sound and vision 
detection functions are combined by a Bayesian network 
[2] for use by the system in detected target speech events. 
The timing of the speech event determined by this 
method is also useful for automatic speech recognition. 
 

2. FUSION OF AUDIO AND VIDEO 
INFORMATION 

 
The basic techniques for speaker tracking used in the 

proposed method were first introduced in a previous 
report [3]. Sound localization is performed using a spatial 
spectrum obtained by a microphone array. An example of 
the data recorded for sound localization is shown in 
Figure 1(a). The MUSIC method [1] is extended here to 
the analysis of a broadband signal with eigenvalue 
weighting. In this spectrum, the region for observation is 
divided into Na bins, and the presence of a peak in each 
bin is detected and recorded in Boolean form (1 
corresponding to peak being detected). 
 

(a) Spatial Spectrum             (b) Video Tracking 
 
 
 
 
 
 
 
 
 

Figure 1: Example results of (a) sound localization 
and (b) vision tracking 

 
Figure 1(b) shows an example of the video 

information obtained by a stereo vision system. Similar to 



the sound information, the region of observation is 
divided into Nv bins, and the existence of a subject in each 
bin is recorded in Boolean form. 

Bayesian network is a probabilistic reasoning model 
that represents a conditional dependency among random 
variables using conditional probabilities, and gives a 
concise specification of joint probability distributions. 
This model consists of nodes and directed arcs connecting 
nodes, and each node corresponds to a random variable in 
real environments. 

Figure 2 shows the Bayesian network used for fusion 
of the audio and video information. A state of each node 
corresponds to the input shown in Figure 1. The nodes for 
audio and video correspond to the elements in the audio 
and video measurement vectors. The 19 audio nodes 
correspond to 19 regions of observation (from –90º to 
+90º in 10º bins),  and the 10 video nodes correspond to 
10 observation regions (from 1 to 480 pixels, in 48-pixel 
bins). The entire video region approximately corresponds 
to an audio angle of –35º to +35º. The probability of each 
state being the “Speaker” node is determined based on 
conditional probability tables (CPTs) and other evidence. 
In the present scheme, it is assumed that only one speech 
event will occur at any one time, amongst environmental 
noise. The connections between audio and video nodes, 
representing the states of the speaker node, simply 
emphasize that both of the corresponding observation 
nodes are in the state of “1”  
 
 
 
 
 
 
 
 
 
 

Figure 2: An example of Bayesian network state 
 

Training data for the Bayesian network was provided 
by a single speaker speaking in the range covered by the 
stereo camera. As a label, the physical direction of the 
speaker and the time of speaking were supplied to the 
training samples. CPTs of P(An|S) and P(Vn|S), can be 
estimated from training samples. Here, S denotes the state 
of the speech event as follows: S = {S1,…,SNs,NoEvent}. 
The state corresponds to the speaker’s position (angle), 
for example {-30º, …,+30º}; when S = –30º, the speaker 
is located in the direction of –30º and is speaking. 
NoEvent indicates that no speech event is detected. For 
the training samples, the value of S was given as a label 
for each measurement vector. 

In operation, the measurement vectors for audio and 
video are obtained at every time block as evidence. Using 
the evidence and CPTs obtained above, the conditional 
probability is calculated and the most probable state of S 
given the values of audio and video nodes can be 
determined, i.e., 
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Figure 3 shows a block diagram of the entire system. The 
information obtained on a speech event can also be used 
in the speech recognizer module. 
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Figure 3: Block diagram of the proposed 
audio-video fusion scheme 

 
3. EXPERIMENTS 

 
The proposed scheme was preliminarily evaluated 

through a detection experiment for speech events. The 
experiment was conducted in a medium-sized meeting 
room with a reverberation time of 0.5 s. Figure 4 shows 
the layout of the experiments, and Table 1 lists the 
parameters of sound localization and subject tracking by 
vision. For training data, a single speaker spoke 
intermittently for 30 s in the directions of –30º to +30º, 
the range covered by the camera, at 5º intervals. As a 
label (state of S), the physical direction of the speaker and 
the time of speaking was supplied with the training 
samples.  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Photograph of the experimental setup 



Figure 5 shows the audio and video CPTs obtained by 
learning using the training samples. In the detection 
experiment, two speakers were set, located at 0º and –20º. 
As interference sources, a television playing human voice 
and music and a loudspeaker playing music were located 
at +30º and –90º, respectively. Figure 6 shows the status 
of input nodes for the Bayesian network from the audio 
and video data vectors. The vertical slice in this figure 
corresponds to the data vector at time t. Figure 7(a) shows 
the results of inference, depicting the detected speech 
events with respect to time, and Figure 7(b) shows the 
true speech events. The speech events were detected with 
reasonable accuracy. Using the information of the 
detected speech events, the ML beamformer was updated 
and the signal from the microphone array is processed at 
every time block. The speech signal that was originally 
obscured by the interference is recovered with audible 
clarity by this ML beamforming. 
 
 

Table 1: Parameters for sound localization 
and vision tracking 

 
Audio  
Sampling Frequency 16KHz 
FFT Length 512 
Window Overlap 128 
Frequencies of interest 500-3,000Hz 
Number of Mic., M 8 
Microphone Array Circular (φ =50cm) 

Video  
Frame Rate 10frames/sec. 
Camera Digiclops® stereo vision camera 

(Point Grey Research Inc.) 
 
 

(a) CPT for Audio                 (b) CPT for Video 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (a) Audio and (b) video CPTs 
obtained using observed data 

 
 

 
(a) Data vectors for audio     (b) Data vectors for video 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: (a) Audio and (b) video data vectors 
 
 

(a) Inference Results             (b) True Speech Segments 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: (a) Interference results 
and (b) true speech segments 

 
The fusion method was then evaluated in detail 

through a speech recognition experiment. The experiment 
was conducted in the same room as the previous 
experiment under the same conditions (Table 1) and 
using the CPTs trained in the previous run. In the 
recognition experiment, two male speakers were set 
standing at +15º and –25º, 1.5 m from the video camera 
(center of the microphone array). The speaker in the 
direction of +15º spoke 492 VCV/CVC phonetically 
balanced Japanese words (ETL-WD-I) [4] on odd counts, 
and the speaker in the direction of –25º spoke the words 
on even counts, alternating with short pauses. A 
loudspeaker playing music was located at –90º as an 
interference source. S/N ratio was approximately 0dB. 
Isolated word recognition was conducted using the 
detected speech events separated by the ML beamformer. 
Discrete-type Hidden Markov Models (HMMs) were 
employed for word recognition [5]. The HMMs were 
speaker-independent monophone models of male clean 
speech from the Japanese Newspaper Article Sentences 
(JNAS) speech database [6]. 
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Table 2: Detection rates of speech events 
using detection boundary 

 
 Detection rate Precision rate Recall rate 
A 86.6% 85.6% 78.3% 
B 77.8% 63.8% 97.8% 
C 56.2% 46.2% 99.2% 

A: without expansion 
B: expanded before and after 0.5 s 
C: expanded before and after 1.0 s 

 
Table 2 shows the detection rates of speech events 

using the proposed scheme. The detection date was 
defined as the number of frames of speech events and 
non-speech segments detected properly, divided by the 
total number of frames. The precision rate was defined as 
the number of frames of true speech events detected 
properly, divided by the number of frames of detected 
speech events. The recall rate was defined as the number 
of frames of detected true speech events divided by the 
number of frames of true speech events. Deletion of the 
beginning and end of the spoken words in the detected 
speech events causes that the detection rate when using a 
speech detection boundary without expansion is lower 
than with expansion. Table 3 shows the word recognition 
rates. The F-measure [7] represents a combined 
evaluation of the precision rate and the recall rate, 

defined as ( ) ( )RPPR ++ 22 /1 ββ . If 1>β , the precision is 

more important than recall, which is the case for speech 
recognition through speech detection ( )2=β .  

 
Table 3: Word recognition rates 

 
 Word accuracy rate  

 
Single mic. without 

sound separation 
Mic. array with 

sound separation 

F-measure 
( )2=β  

A 20.5% 68.1% 0.797 
B 30.1% 79.1% 0.884 
C 31.5% 80.1% 0.807 

A: without expansion 
B: expanded before and after 0.5 s 
C: expanded before and after 1.0 s 

 
The word recognition rate is higher when using a 

speech detection boundary expanded to include 0.5 s 
before and after the event. The F-measure ( )2=β also 

becomes highest when using the same expanded speech 
detection boundary. In these experiments, expansion by 
0.5 s before and after the detected speech provides the 
best performance for isolated word recognition. 
 
 

4. CONCLUSION 
 

A method for combining audio information for sound 
localization using a microphone array, and video 
information for subject tracking using a stereo vision 
system was proposed. The fusion of this audio and video 
information allows speech events to be detected in the 
temporal and spatial domains. Speech signals from 
speakers were separated using a sound separation system 
based on the detection results. 

A Bayesian network was used to combine the audio 
and video information by establishing a correspondence 
between the audio and video coordinate while allowing 
for ambiguity in estimation. Good results in isolated word 
recognition experiments demonstrate the effectiveness of 
the fusion method for automatic speech recognition in 
real environments. 

In the future, the authors intend to incorporate more 
information sources, such as voice activity detection or a 
mouth motion detection [8]. The use of multiple 
information sources is expected to increase the robustness 
of speech detection. The scheme proposed in the present 
report readily allows for the addition of more input nodes 
as a new information source as an advantage of using the 
Bayesian network. 

Phone model adaptations for real environments from 
clean speech conditions are also planned for more 
effective speech recognition in the future. The 
incremental adaptation of phone models is expected to 
develop an automatic speech recognizer for moving 
subjects and/or interferences. 
 

REFERENCES 
 
[1] F. Asano et al, “Real-time sound source localization and 
separation system and its application to automatic speech 
recognition”, Proc. Eurospeech 2001, B43, pp. 1013-1016, Sep. 
2001 
[2] F.V. Jensen, Bayesian Networks and Decision Graphs, 
Springer-Verlag, New York, 2001 
[3] F. Asano et al, “Fusion of audio and video information for 
detecting speech events”, Proc. Information Fusion 2003, Jul. 
2003 
[4] K. Tanaka et al, “The ETL speech database for speech analysis 
and recognition research”, Proc. ICSLP90, 24.7, pp. 1101-1104, 
Nov. 1990 
[5] S. Young et al, The HTK Book (for HTK Version 3.1), 
Cambridge Univ. Engineering Department, 2001 
[6] K. Itou et al, “IPA Japanese dictation free software project”, 
Proc. LREC2000, pp. 1343-1349, May 2000 
[7] C. J. van Rijsbergen, Information Retrieval (second edition), 
Butterworths, London, 1979 
[8] K. Murai et al, “Real time face detection for multimodal 
speech recognition”, Proc. IEEE ICME2002, vol.2, pp. 373-376, 
Aug. 2002 


	Page319: 319
	Header: International Workshop on Acoustic Echo and Noise Control (IWAENC2003), Sept. 2003, Kyoto, Japan
	Page320: 320
	Page321: 321
	Page322: 322


