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ABSTRACT

A novel adaptive beamformer employing recursively up-
dated soft constraints for acoustic speech enhancement is
proposed. The beamformer operates in a subband struc-
ture to allow a time-frequency operation for each channel.
Consequently, the processing performed can be viewed as
a combined weighted spatial,frequency and temporal fil-
ter. The major benefit of the new recursive soft constrained
beamformer is that it allows the possibility of using the
spectral information of the desired source to modify the soft
constraint. This has clear benefits on the speech distortion
of the source of interest. The novel adaptive beamformer
involves continuous modification of the soft constraint by
feeding back the spectral content of the estimated output
speech signal. Evaluations of the proposed beamformer
based on real car data show that the proposed algorithm sig-
nificantly improves the speech quality with noise suppres-
sion levels up to 17 dB.

1. INTRODUCTION

In recent years, microphone arrays have received increas-
ing attention for the acquisition of speech in hands-free and
distant-talker scenarios [1]. Microphone arrays can be used
to reduce interference in hearing aids, teleconferencing sys-
tems, hands-free microphones in automobiles, computer ter-
minals, speaker phones and speech recognition systems [2],
[3], and [4]. Based on adaptive beamforming, microphone
arrays are especially promising in terms of noise and rever-
beration suppressions.

In [4], a soft constrained subband beamformer was pro-
posed as a means to enhance acoustic speech signals. This
soft constraint was formulated assuming that the power
spectral density (PSD) of the source is constant over time
and frequency range and located in a certain spatial region.
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However, remembering that speech is short-term stationary,
which means that the spectrum change over time. Con-
sequently, this original approach does not efficiently uti-
lize the time-frequency information of the source of interest
(SOI). The contribution in this paper is a new recursive soft
constraint. The constraint is recursively updated using the
current time-frequency content of the output signal from the
beamformer. Since the output is an enhanced version of the
SOI, this considerably improves performance and speech
quality compared to the existing subband soft constrained
beamformer. The PSD of the SOI is unknown at the current
time instant, hence the beamformer output from one time-
instant earlier is used in the next iteration as an estimation of
the PSD. This results in a time-varying soft constraint that
depends on the spectral content of the SOI. The spatial in-
formation is captured by using localization information and
the spectral weighting is changed according to the spectral
content of the SOI. The variation in the spectral content of
the SOI over time will be tracked thus providing a spectrally
optimized constraint at each time instant.

Evaluations using real data are performed under the same
scenario as in [4]. Results show that the proposed algorithm
significantly improves the speech quality. In addition ab-
sence of speech signal does not influence the performance
of the algorithm and there is no need for a Voice Activity
Detector (VAD).

2. SOFT CONSTRAINED BEAMFORMING
ALGORITHM

Consider a linear microphone array system as shown in Fig.
1 with I microphones and a source in a near-field model.
This SOI is in reality a person speaking and modelled as an
area of point sources clustered closely in space. This area
is assumed to be within a range of radii[Ra, Rb] and angles
[θa, θb]. The noise sources are assumed to be uncorrelated
with the SOI. The only germane part in the modelling is to
capture the SOI, since that determines the constraint.
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Fig. 1. Configuration of the linear microphone array and the
source area.

2.1. Problem formulation

The structure of the proposed subband beamformer is
shown in Fig. 2. The received data vector of the micro-
phone arrays(l) = [s1(l), · · · , sI(l)], wherel denotes the
time index, is first divided intoM subbands by using anal-
ysis filterbanks. The subband signals are then fed into the
proposed beamformer. Finally, the estimated output signal
y(l) is obtained by passing the beamformer output through
a synthesis filterbank.

For a frequencyΩ, the covariance matrixR(Ω)
s and the

cross-covariance vectorr(Ω)
s of the received signals can be

calculated as follows

R(Ω)
s =

∫ ∫ Rb,θb

Ra,θa

S(Ω)d(R, θ, Ω)d(R, θ,Ω)HdRdθ

(1)
and

r(Ω)
s =

∫ ∫ Rb,θb

Ra,θa

S(Ω)d(R, θ, Ω)dRdθ (2)

where(.)H denotes the Hermitian transpose of a vector and
S(Ω) is the PSD of the SOI. The response vectord(R, θ, Ω)
is given as

d(R, θ, Ω) =
[

1
R1

e−jΩτ1(R,θ), . . . ,
1

RI
e−jΩτI(R,θ)

]T

(3)

whereτi(R, θ) andRi, 1 ≤ i ≤ I, denote the time delay
from a point source of radiusR and angleθ to the sensor
i and the distance between the source and the sensori, re-
spectively.

Let w(Ω)
opt be the optimum weight vector for frequencyΩ,

w(Ω)
opt = [w(Ω)

1 , w
(Ω)
2 , . . . , w

(Ω)
I ]T (4)
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Fig. 2. Structure of the proposed subband beamformer.

wherew
(Ω)
i is the optimum coefficient for theith sensor.

The optimum weight vector is then calculated as

w(Ω)
opt =

[
R(Ω)

s + R(Ω)
n

]−1

r(Ω)
s (5)

whereR(Ω)
n is the noise covariance matrix. It follows from

(5) that

w(Ω)
opt =

[
R(Ω)

s /S(Ω) + R(Ω)
n /S(Ω)

]−1 (
r(Ω)

s /S(Ω)
)

=
[
R̄(Ω)

s + R̄(Ω)
n

]−1

r̄(Ω)
s

(6)
where

R̄(Ω)
s =

∫ ∫ Rb,θb

Ra,θa

d(R, θ,Ω)d(R, θ, Ω)HdRdθ, (7)

R̄(Ω)
n = R(Ω)

n /S(Ω) (8)

and

r̄(Ω)
s =

∫ ∫ Rb,θb

Ra,θa

d(R, θ, Ω)dRdθ. (9)

From equations (7) and (9),̄R(Ω)
s andr̄(Ω)

s can be calcu-
lated for a given constraint region without the knowledge of
the PSD of the source. Thus, we only need to recursively
estimateR̄(Ω)

n . Since data containing only the active noise
is not available, the noise covariance matrixR(Ω)

n is esti-
mated by usingK samples of received datas(Ω)(l), where
K is a fixed positive number. Moreover, the exact PSD of
the sourceS(Ω) is not possible to obtain especially in the
car environment where strong speech masking components
of noise exists. Thus, we propose to estimateS(Ω) by using
the previous beamformer outputw(Ω)

opt (l − 1)Hs(Ω)(l − 1).
For anyk > 0, let

z(Ω)(k) =
s(Ω)(k)

|w(Ω)
opt (k − 1)Hs(Ω)(k − 1)|

(10)



where |.| is the amplitude of a complex number. At iter-
ation l, R̄(Ω)

n (l) can be estimated based onz(Ω)(k) where
max(0, l −K) ≤ k ≤ l as follows.

• If l ≤ K then

R̄(Ω)
n (l) =

1
l

l∑

k=1

z(Ω)(k)z(Ω)(k)
H

. (11)

• If l > K then

R̄(Ω)
n (l) =

1
K

l∑

k=l−K+1

z(Ω)(k)z(Ω)(k)
H

. (12)

In the next section, a recursive algorithm is developed
to efficiently update the beamforming weights according to
(6), (11) and (12) based on the received data at the micro-
phones.

2.2. Proposed Recursive Algorithm

The algorithm runs sequentially for each subband with mid-
frequencyΩ = 2πFsm/M , 0 ≤ m ≤ M − 1, whereFs is
the sampling frequency. Let

R̄(Ω)(l) = R̄(Ω)
s + R̄(Ω)

n (l) (13)

and
P(Ω)(l) = [R̄(Ω)(l)]

−1
. (14)

The optimal weight vector (6) for the iterationl is then re-
duced to

w(Ω)
opt (l) = P(Ω)(l)r̄(Ω)

s . (15)

It follows from (12) that forl > K , R̄(Ω)(l) can be ob-
tained from the previous estimate as

R̄(Ω)(l) = R̄(Ω)(l − 1) + 1
K z(Ω)(l)z(Ω)(l)

H−

1
K z(Ω)(l −K)z(Ω)(l −K)

H
.

(16)

Thus, the inverse matrixP(Ω)(l) for l > K can be updated
efficiently by using the matrix inversion lemma

P(Ω)(l) = D +
Dz(Ω)(l −K)z(Ω)(l −K)HD

K
(
1 + z(Ω)(l −K)HDz(Ω)(l −K)

)
(17)

where

D = P(Ω)(l−1)−P(Ω)(l − 1)z(Ω)(l)z(Ω)(l)HP(Ω)(l − 1)
K

(
1 + z(Ω)(l)HP(Ω)(l − 1)z(Ω)(l)

) .

(18)
The recursive algorithm is now given in the following

steps.
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Fig. 3. Spectrograms of the noisy signal and beamformer
output.

• Step 1: Choose a number of subbandsM , a block size
K and a weight smoothing factorλ1.

• Step 2: Initializel = 1 and the weight vectorw(Ω)
opt (0)

as anI × 1 zero vector.

• Step 3: Calculate the matrix̄R(Ω)
s and the vector̄r(Ω)

s

according to (7) and (9), respectively.

• Step 4: Ifl ≤ K, the matrixP(Ω)(l) is calculated ac-
cording to (10), (11) and (14) by using pseudo-inverse
operation instead of the conventional matrix inverse
operation due to rank deficiency. Otherwise, the ma-
trix P(Ω)(l) is updated recursively by using (17) and
(18). The weight vector is then updated as

w(Ω)
opt (l) = λw(Ω)

opt (l − 1) + (1− λ)P(Ω)(l)r̄(Ω)
s

and the output is given by

y(Ω)(l) = w(Ω)
opt (l)

H
s(Ω)(l).

• Step 5: Setl = l + 1 and return to Step 4 until the end
of the data.

3. SIMULATION RESULTS

The performance of the beamformer is evaluated in a hands-
free situation in a car with six sensor microphone array

1The factorλ is employed because the target speech signal adds spatial
coherent power to the pre-calculated covariance matrix, and this in turn
leads to small weight power fluctuations.
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Fig. 4. PSD of the source and the noise before and after the
beamformer.

mounted on the visor at the passenger side in a Volvo sta-
tion wagon. Data were gathered on a multichannel DAT-
recorder with a sampling rate of 12 kHz and a 300-3400 Hz
bandwidth. The car was running at the speed of 110 km/h
on a paved road.

A uniform factor two over-sampled DFT filterbank is
used to decompose the received array signals intoM sub-
bands. The analysis and synthesis filterbanks are designed
by using a Hamming window with the cut off frequency
ωc = π/M .

Simulation is performed with 64 subbands with the noise
covariance matrix estimated usingK = 64 samples. The
weight smoothing factorλ is chosen asλ = 0.99 and the
length of the speech signal is 8 seconds. The matrix (7) and
the vector (9) are calculated by using numerical integration
with the constrained region given in Fig. 1.

Fig. 3 shows the spectrogram of the received signal at
the4th microphone and the beamformer output. The noise
level of the signal at other microphones is approximately
the same as the4th microphone. Clearly, the noise is sig-
nificantly suppressed by passing the received signal through
the beamformer.

Fig. 4 plots the PSD of the source and the noise before
and after the beamformer. The PSD of the source after the
beamformer is approximately the same as before the beam-
former, especially for low frequencies that are important to
human hearing. The total noise suppression is more than
15 dB and the suppression is almost the same for all the
frequencies.

The noise suppression levels for different frequencies in
the first and the last four seconds are given in Table 1. The
suppression is approximately the same for both time peri-
ods. Thus, the recursive estimate for the noise covariance

matrix does not result in error propagation. Moreover, the
absence of speech signal does not have significant influence
on the performance of the algorithm. This can be seen from
the fact that there exists a short silence between the two pe-
riods. Informal listening tests show a very low signal dis-
tortion.

Frequency (Hz) Noise suppression [dB]
The first 4 secs The last 4 secs

300-1000 17 17.2

1000-2000 15 15

2000-3400 13.5 13.2

Total suppression 15.2 15.1

Table 1. The noise suppression level for different frequency
bands.

4. CONCLUSIONS

In this paper, a new soft constrained beamformer is devel-
oped for acoustic speech enhancement. The PSD of re-
ceived speech signal is recursively estimated in order to
weigh the output efficiently in the temporal domain. This
is done by including the output signal power estimate into
the soft constraint formulation. The advantage of this novel
approach over the earlier suggested soft constrained beam-
former is that the proposed adaptive beamformer signifi-
cantly improves the speech quality while maintaining high
noise suppression levels up to 17 dB for real car data.
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