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ABSTRACT

We propose a general methodology to design a robust voice
activity detector that suits the needs of the speech enhance-
ment system it is dedicated to. More than imposing rules,
we initiate ideas on how to perform the analysis of the re-
quirements for the Voice Activity Detection (VAD) and how
to choose a reference, and evaluate the performances of the
explored solutions in order to choose the one that best fits.
As an example, the methodology is then applied to evaluate
five VADs based on features described in the literature in
the scope of two typical speech enhancement applications.

1. INTRODUCTION

Voice activity detection is an outstanding problem for speech
transmission, enhancement and recognition. The variety
and the varying nature of speech and background noise makes
it especially challenging. In the past years, many features
emphasizing the differences between speech and noise have
been proposed for their robustness. Different performance
evaluation criteria can be used to assess the quality of the
VAD based on these features. In speech recognition, the
word error rate at different level of noise is compared [1]. In
speech transmission, one usually conducts subjective tests
leading to a mean opinion score or one derives a measure
of the distortion due to the speech clipping by using psy-
choacoustic auditory models. In speech enhancement, the
most widespread objective criterion is to count and clas-
sify the number of misdetected signal frames in error cat-
egories (e.g. FEC, MSC, OVER, NDS) for different SNR
values [2]. The performance of the algorithm is then ob-
tained through the comparison with a standard VAD.

In this paper, rather than describing a new voice activ-
ity detection method, we propose a methodology to choose
among a set of VADs based on different features the one
that best fits the needs of the application.

2. METHODOLOGY

2.1. Determination of the speech decision errors critical
for the application

A VAD can be decomposed in two steps : the computa-
tion of metrics and the application of a classification rule.
Independently from the VAD method, we have to operate
a compromise between having voice detected as noise or
noise detected as voice. Thus, as we are not able to design
a perfect VAD, we should define what errors are ”fatal” for
our application. After the analysis of the need of the appli-
cation, we propose to use the error types that were defined
in [3] to identify the critical errors. The table in Fig.1 lists
possible errors obtained by taking into account the context.

 

 
Fig. 1. Types of errors considered for evaluating VAD algo-
rithms taken from [3]. Standard Error types : NDS : Noise
detected as speech, WC : Word Clipping, FEC : Front End
Clipping, OVER: Prolongated detection of speech in noise,
MSC : Midspeech Clipping.

Errors 3,4,7 and 8 can be regrouped under the errors
”Speech frames detected as Noise” (SdN) and errors 1,2,5
and 6 under the errors ”Noise frames detected as Speech”
(NdS).

2.2. Choice of the reference

The hand-labelling of the frames is tedious and depends in
some extent from the auditory perception of speech pauses.
The use of an automatic labelling scheme implies that a cer-
tain threshold is set and thus a compromise is done again in
the discrimination of the speech from the noise. Hence, it
is not possible to find one absolute reference. The choice
of one reference type already implicitly denotes the set of
acceptable errors. Possible references, as shown in Fig.2
could be:



a) A VAD decision derived from a speech recognition
system on clean speech (a speech block↔ a word)

b) An energy based VAD on clean speech (a speech block
↔ a high energy signal part)

c) A reference defined with soft values ([0...1]) accord-
ing to the probability of the presence of speech. 

 
 

Fig. 2. Example of automatically-generated references.

2.3. Evaluation of the robustness and the suitability for
the application

In the literature, the performance of a VAD is mostly mea-
sured in terms of error rate at different SNRs ([1, 3, 4]). The
underlying definition of the robustness can be formulated as
”a VAD is robust if it gives decisions close to a reference in
quiet as well as in adverse environments”.

We introduce a new definition claiming that a VAD is
robust when it gives similar decisions for clean speech and
noisy speech. The robustness can be estimated by taking the
VAD’s decision on clean speech as a reference and com-
puting error statistics of the same VAD applied on noisy
speech. The more robust the VAD, the scarcer the errors.

We also have to determine if the feature can be suitable
for an application. Generally, the evaluation of the perfor-
mance of a VAD is performed by counting the number of
errors for each error type. This implies a strong confidence
in the chosen reference. Possible alternatives could be:

a) counting the errors for each error type using two ref-
erences : one emphasizing errors 1,2,5,6 and the other
one emphasizing errors 3,4,7,8

b) using the probability of speech as a reference and
weighting the errors statistics according to this ”soft”
value.

The choice of one VAD solution among others should
be based on both the robustness and the suitability for the
application.

3. APPLICATION TO SPEECH ENHANCEMENT

In speech enhancement systems, a reliable VAD is often a
keystone component, for instance, for noise estimation and
for adaptive echo cancellation. Let’s apply the steps of the
methodology to these two examples:

Step 1: Critical Speech Decision Errors
In noise estimation, we intend to update the noise energy

as often as possible during a noise period. A VAD can trig-
ger this adaptation. However, updating the noise estimation
during speech periods can induce an important estimation
error. The critical error is then to classify speech as noise
and errors 3,4,7,8 (SdN) should be minimized.

Many echo cancellation algorithms need an estimation
of the echo path. The adaptation of this estimation should
happen exclusively during ”echo-only” periods. Otherwise,
a fast divergence can occur (i.e. during double-talk or in
the absence of far-end signal). Besides other methods that
control the adaptation step, one can use the VAD decisions
of the far-end and near-end channel to determine when to
freeze the adaptation. On the far-end, misclassifying noise
as speech may lead to an adaptation during the absence of
far-end speech. On the near-end, misclassifying speech as
noise implies missing possible double-talk periods. Hence,
errors 3,4,7,8 (SdN) should be minimized on the near-end
and errors 1,2,5,6 (NdS) on the far-end.

Step 2: References choice
As a first experiment, we decided to use two references:

a reference derived from a speech recognition system on
clean speech and a reference generated with an energy-based
VAD on clean speech. The first reference is emphasizing er-
rors 3,4,7,8 and the second errors 1,2,5,6.

Step 3: Evaluation of the algorithm
We used the complete AURORA3 database to evaluate

the algorithms. It is a subset of the SpeechDat-car database
containing isolated and connected spanish and german dig-
its in car driving conditions.

For the robustness measure, we derive a global percent-
age of false detections. The VAD is first applied on clean
speech. The output is then used as a reference for the eval-
uation of the same VAD run on noisy speech (cf. Table1)

The suitability is evaluated using the two references. For
each reference, the statistics are composed of:

• the rate of speech frames detected as noise over the
amount of speech frames

• the rate of noise frames detected as speech over the
amount of noise frames

• a global percentage of false detection

Those statistics are given for clean speech, noisy speech and
the whole database (cf. Table2 and Table4).

No fine optimization of the parameters was done on the
algorithms.



4. DESCRIPTION OF THE EVALUATED
ALGORITHMS AND RESULTS

We evaluated five VADs based on features taken from the
literature :

Energy-based VAD in the time domain [5]:
The energy of the signal is compared with a threshold

depending on the noise level. Speech is detected when the
energy lies over the threshold. A hang-over of 2 frames is
added to compensate for small energy gaps in the speech
and to make sure the end of the utterance, often character-
ized by a decline of the energy, is not clipped.

VAD using the global SNR computed with the Kur-
tosis [6]:

The global SNR is implemented as in [6] except that we
use an FFT instead of filter banks. The frame classification
is done by applying an adaptive threshold on this feature. A
hangover scheme of two frames is finally added to obtain
the final voice activity decision.

VAD using the distance to the average cepstrum in
noise [4]:

The euclidian distance between the actual cepstral coef-
ficients and the average cepstrum in noise is much greater
in speech period. Speech is detected when this distance is
higher than an adaptive threshold, depending on the distance
in non-speech period and a floor value of the feature.

However, the log scaling after the FFT dilates the com-
ponents with lower energy and compresses the components
with higher energy. Therefore the difference between noise
and speech is less emphasized. More generally, any scaling
assumes a certain level of noise. This kind of assumptions
may lead to extra errors if the noise level is different from
the supposed level.

VAD using the distance to the average spectrum in
noise [4]:

The principle of this VAD is exactly the same as the
VAD using the distance to the average cepstrum in noise.
The spectrum was used instead of the cepstrum to over-
come the drawback of the log scaling described above. In
this case, the properties associated with the cepstrum are
not valid anymore but this feature allows a more convenient
discrimination of the noise.

Voicing Detection using the formant’s shape and sta-
bility [ 1]:

As described in [1], the shape of the formants can in-
dicate the presence of voiced speech. Furthermore, assum-
ing that the speech is stationary in voiced-speech periods,
the position of the formants should stay quite stable from
one frame to another. After taking the FFT of the LPC co-
efficients of the signal, we use 3 heuristic criteria to detect
voicing: the stability of the formants, the height of the peaks
compared to the minima and the sharpness of the peaks.

4.1. Evaluation of the robustness

VAD Global Error Rate
Energy 12.80%

Global SNR with Kurtosis 11.35%
Distance to Cepstrum 16.75 %
Distance to Spectrum 11.50%

Formants’shape and stability 20.00 %

Table 1. Global Detection Error Rate on noisy speech with
a reference obtained with the same algorithm applied on
clean speech

Table1 shows that the most robust algorithms are the
VADs using the global SNR computed with the Kurtosis,
the average spectrum in noise and the energy in the time
domain. These algorithms should be preferred to the others
less robust.

4.2. Evaluation of the suitability for an application

Ref. Speech Recognition SdN NdS Total
Energy

Clean Speech 9.75 % 2.40 % 12.15 %
Noisy Speech 14.60 % 4.05 % 18.65 %

Total 12.17 % 3.23 % 15.40 %
Global SNR with Kurtosis

Clean Speech 8.45 % 2.75 % 11.20 %
Noisy Speech 11.40% 4.75 % 16.15 %

Total 9.93% 3.75 % 13.68%
Distance to Cepstrum

Clean Speech 3.35 % 7.75 % 11.10 %
Noisy Speech 12.80% 4.75 % 17.55 %

Total 8.08% 6.25 % 14.33%
Distance to Spectrum

Clean Speech 11.70 % 1.80 % 13.50 %
Noisy Speech 15.80 % 2.95 % 18.75 %

Total 13.75 % 2.38 % 16.13 %
Formants’shape and stability

Clean Speech 36.95 % 1.90 % 38.85 %
Noisy Speech 41.45 % 2.35 % 43.80 %

Total 39.20 % 2.13 % 41.33 %

Table 2. Statistics obtained with the reference derived from
Speech Recognition: Percentage of Speech frames detected
as Noise (SdN), Noise frames detected as Speech (NdS) and
overall wrong detected frames

As explained in section3, the VAD dedicated to the
noise estimation and the echo cancellation on the near-end
path should minimize the number of speech frames detected
as noise (SdN). Hence, one should observe the statistics ob-
tained with the reference emphasizing this type of errors



(i.e. the Speech Recognition reference) and especially the
percentage of SdN in this table. Good results were obtained
by the VAD using the distance to the cepstrum and the one
using the global SNR. Even though the total percentage of
SdN errors is somehow better for the first, we prefer the
VAD using the global SNR, as it yields better results in
noisy speech and a lower overall error rate.

We can notice that the VAD using the distance to the av-
erage spectrum and the VAD based on the formants have
very low NdS errors. They may correctly detect speech
frames that were ignored by the other algorithms and intro-
duce very few false detection. By logically combining the
VAD using the global SNR with the VAD using the distance
to the spectrum (OR operation), we obtain an improvement
of the percentage of errors SdN and the global error rate.
The results are presented in Table3.

Ref. Speech Recognition SdN NdS Total
Kurtosis+Spectrum

Clean Speech 7,65 % 3,00 % 10,65 %
Noisy Speech 10,45% 5,25 % 15,70 %

Total 9,05% 4,13 % 13,18%

Table 3. Combination of the VAD using the global SNR
computed with the Kurtosis and the VAD based on the dis-
tance to the average spectrum in noise - Reference derived
from Speech Recognition

As the VAD used for the echo cancellation on the far-
end path should minimize the number of noise frames de-
tected as speech (NdS), we focus on the percentage of NdS
in the statistics with the energy-based VAD as reference (Ta-
ble 4). The VAD using the formants’ shape and stability
gives then the best results but the overall error rate is low.
However, the algorithms based on the energy in the time
domain and the distance to the spectrum give quite close
results.

5. CONCLUSION

After analysis of the results, we can now deduce that the
combination of the VAD using the global SNR computed
with the Kurtosis and the VAD using the distance to the
spectrum best meets the constraints of robustness and suit-
ability for the noise estimation and the near-end speech ac-
tivity detection.

Concerning the far-end speech activity detection for the
adaptation freeze, two algorithms can be recommended: the
VAD based on the energy in the time domain and the VAD
using the distance to the average spectrum in noise.

Ref. Energy SdN NdS Total
Energy

Clean Speech 3.50 % 2.15 % 5.65 %
Noisy Speech 9.00 % 4.75 % 13.75 %

Total 6.25 % 3.45% 9.70%
Global SNR with Kurtosis

Clean Speech 4.50 % 4.85 % 9.35 %
Noisy Speech 7.30 % 6.85 % 14.15 %

Total 5.90 % 5.85 % 11.75 %
Distance to Cepstrum

Clean Speech 0.15 % 10.55 % 10.70 %
Noisy Speech 8.10 % 6.15 % 14.25 %

Total 4.13 % 8.35 % 12.48 %
Distance to Spectrum

Clean Speech 5.40 % 1.60 % 7.00 %
Noisy Speech 10.05 % 3.30 % 13.35 %

Total 7.73 % 2.45% 10.18%
Formants’ shape and stability

Clean Speech 30.45 % 2.00 % 32.45 %
Noisy Speech 35.10 % 2.60 % 37.70 %

Total 32.78 % 2.30% 35.08 %

Table 4. Statistics obtained with the reference derived from
the energy-based VAD
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