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ABSTRACT posed method can achieve the separation and deconvolution for a

We propose a new two-stage blind separation and deconvomtionconvolutive. miXtUre of speech when we set the SIMO-ICA's filter
(BSD) algorithm for a convolutive mixture of speech, in which a length sufficiently long.

ICA) and blind multichannel inverse filtering are combined. SIMO- ) )

ICA can separate the mixed signals, not into monaural source sig-" this study, the number of microphones/s and the number
nals but into SIMO-model-based signals from independent sources®f Multiple sound sources is. The observed signals in which
as they are at the microphones. After SIMO-ICA, a simple blind multiple source signals are mixed linearly are expressed as
deconvolution technique for the SIMO model can be applied even N1

when each source signal is temporally correlated. The S|mulat!on z(t) = Z a(n)s(t —n) = A(2)s(t), 1)
results reveal that the proposed method can successfully achieve

n=0
the separation and deconvolution for a convolutive mixture of speech.
wheres(t) = [s1(t),---,s.(t)]T is the source signal vector, and
1. INTRODUCTION x(t) = [z1(t),--- ,xx(t)]" is the observed signal vector. Also,

Blind separation and deconvolution (BSD) of sources is an ap- a(n) is the mixing filter matrix with the length oV, and A(z) is
proach taken to estimate original source signals using only the in-the z-transform ofi(n); these are given as

formation of mixed signals observed in each input channel. In the

BSD framework, not only the source separation but also the decon- a(n) = [au(n)]k, (2
volution of the transmission channel characteristics are considered. N-1

For the BSD based on independent component analysis (ICA), var- A(z) [Ari(2)],, = [Z akl(n)z_”:| 7 3)
ious methods have been proposed to deal with the separation and n=0 Bl
deconvolution for the convolutive mixture of independently, iden- . ] L

tically distributed (i.i.d.) source signals [1, 2]. These BSD meth- Wherez"" is used as the unit-delay operator, i.e," - z(t) =
ods require the specific assumptions that the source signals are mut(t — n), ar(n) is the impulse response between theh mi-
tually independent and each source signal is also temporally inde-Crophone and theth sound source, and];; denotes the matrix
pendent. However, the latter assumption does not hold in manyWhich includes the elemer in thei-th row and thej-th column.
practical acoustic mixtures of sound signals such as speech. Thdlereafter, we only deal with the case§f= L in this paper.
application of the conventional ICA-based BSD to speech often  Inthe time-domain ICA (TDICA), the separated siggét) =

yields the negative results, e.g., the separated speech is adversely: (), -+, y2(t)]" is expressed as
decorrelated and whitened. In order to solve the problem, we b1
have proposed a novel BSD approach that combines information- y(t) = w(n)@(t —n) = W(2)a(t), )

geometry theory and multichannel signal processing [3]. In this

approach, the BSD problem is resolved into two stages: new blind

separation technique using a Single-Input Multiple-Output (SIMO)- wherew () is the separation filter matri¥}” (z) is the z-transform

model-based ICA (SIMO-ICA) and the deconvolution in the SIMO- of w(n), and D is the filter length ofw(n). In the ICA-based

model framework. BSD framework assuming i.i.d. sources, Amari [1] proposed the
In the previous report[3], we dealt with real-world data, but holonomic TDICA algorithm which optimizes the separation fil-

it is hard to say that we could make clear whether the proposedter by minimizing the Kullback-Leibler divergence between the

BSD can obtain exact source signals or not. With real-world data, joint probability density function (PDF) af(t) and the product of

it is difficult to evaluate the performance of the system accurately marginal PDFs ofy; (). The iterative learning rule is given by

due to background noise, too long reverberation, and so on. In

this paper, we give the objective indication of the performance in 4] 5] D-1

the first stage, and properly evaluate the performance of the pro® (n) = w’(n)+n Z I6(n —d)

posed method using the artificial transmission channels. In ad- d=0

n=0

dition, we show that the proposed method can be regarded as a 4] bl T ]
square FIR-type filter matrix, and we discuss the channel identifi- —<‘P(y' )y’ (t—n+d) >t ~w”(d)D)
ability of such a system. The simulation results reveal that the pro-

This work was partly supported by Core Research for Evolutional Sci- Wheren is the step-size parameter, the supersdgipts used to
ence and Technology (CREST) in Japan. express the value of theth step in the iterationg;): denotes the
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time-averaging operator, anklis the identity matrix. (n) is a In this case, (8) yields
delta function, wheré(0) = 1 andd(n) = 0 (n # 0). ¢(-) is the
nonlinear vector function. Yieart) = [Akmen(2)smen(t —D/2)],, . (12)
3. PROPOSED TWO-STAGE BSD ALGORITHM In order to obtain (8), the gradient of (7) with respectdg:a;(n)
In this section, we propose a new two-stage BSD algorithm com- Should be added to the iterative learning rule of the separation fil-
bining SIMO-ICA and blind multichannel inverse filtering. In ter. The natural gradient [1] of (7) is given as
the proposed method, the separation/deconvolution problems can

be solved efficiently using the following reasonable assumptions. < I Zy x(t — D/2) H >
(A1) The assumption of the mutual independence among the acous- a'lUICAI reail ¢
tic sound sources usually holds, and consequently, this can be used

inthe SIMO-ICA-based separatiofA2) The temporal-correlation Wica(z" ) Wicai(2)

property of the source signals and the nonminimum phase property

of the mixing system can be taken into account in the blind multi- = 2 Z < ZyICAl —z(t — D/2))
d =1

channel inverse filtering for the SIMO model. The detailed process

using the proposed algorithm is as follows. Yroa(t —n+ d)T>z - wical(d). (13)

3.1. First stage: SIMO-ICA for source separation
By combining (13) with the nonholonomic TDICA [4], we can

In this stage, a new blind separation method using SIMO-ICA is obtain a new iterative algorithm in tlieh ICA of SIMO-ICA as

conducted. SIMO-ICA consists of multiple ICA parts anfibility i)
controller, and each ICA runs in parallel under fidelity control of ~ wiga; (1)

the entire separation system . The separated signals bftHEA - wl (n)
in SIMO-ICA are defined by e
— _di (4] (4] _ T
vieal®) = [ (0 = Zwmz n)a(t = n) "2 {°ﬁ diag (i (yica () vieui(t —n +4)"),
= W t), 6
ICAl( ) ( ) (6) _|_5< Zy%Al t—D/Q))

wherewicai(n) is the separation filter matrix in thieth ICA,

and Wicai(z) is the z-transform ofwica:(n). Regarding the . " ]

fidelity controller, we introduce the following new cost function to Yiea(t —n+d) >t “wica(d), (14)
be minimized,

wherea andg are the step-size parametesss for the control of
<” ZyICAl —x(t=D/2) |l > Q) the total updﬁate quantity Fz);lrﬁiis E)r fidelity control. In (14), up-
dating ofwica;(n) for all I should be simultaneously performed
where|| z || is the Euclidean norm of vectar. Using (6) and (7), in parallel in terms ofl because each iterative equatlon is asso-
we can obtain the appropriate separated signals and maintain theitiated with the others vid"“ 4%, , = S5 wlil | 2)a(0).
spatial qualities as follows. Also, the initial values otvica;(n) for all I should be different. If

Theorem: If the independent sound sources are separated by (6),not, each ICA has the same set of inputs and will produce the same

and simultaneously (7) is minimized to be zero, then the output outputs. This results in an undesired solution. However, if we use

signals converge on unique solutions, up to the permutation, as  different initial values, then the convergence on the appropriate
SIMO solution is guaranteed by the simultaneous minimization of

vien(t) = diag[AG)PT| Pis(t=D/2), (8  (6)and (7).
where P, (I = 1, ..., L) are exclusively-selected permutation 3.2. Second stage: Blind multichannel inverse filtering for de-
matrices which satisfy convolution
In this stage, first, consider the blind channel identification corre-
ZPZ = [l (9) sponding to the first sound soureg(t), where we deal with the

case ofK = L = 2. Note that this can be easily extended to the gen-
eral case K > 2) by picking up the arbitrary two SIMO compo-
nents from SIMO-ICA's outputs. In this process, the room transfer
functions, A11(z) and A1 (z), can be estimated by a subchannel
matching approach [5, 6, 7] in an SIMO framework because we
have already resolved the mixing process of the sources into a sim-
ple SIMO model through SIMO-ICA in the previous stage. The
subchannel matching approach can work even for the temporally
P, = [5m<k,l>],ﬂ. ) (10) correlated signal. Regarding the blind channel identification cor-
responding to another sound souseét), we can estimatel 2 (z)
and A2 (z) using the same approach.
(kD) E+1—1 (k+1—-1<1L) 1) Finally, we can estimateAthe multichannel inverse filtéts, (z)
k+l—-1-L (k+l—1>1L) - andGai (z) for Aq1(z) and Az1(z), andGi2(z) andGaz(z) for

As for the proof of theorem, we have given in [3].

Obviously the solutions given by (8) provide necessary and
sufficient SIMO componentsd; (z)s;(t — D/2), for eachl-th
source. There, however, is an arbitrariness in a selectiaR®;of
For example, one possible selection is set permutation matrices
P, to following equation,

whered;; is Kronecker's delta function, and
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A12(z) and Asy(z), based on the multiple-input/output inverse 4. SIMULATIONS

theorem (MINT) [8]. In the MINT method, the exact inverse of 4.1. Conditions for experiment

the room acoustics can be uniquely determined, even vihefx) The mixing filter matrix A(x) is taken to bedy (2) 1
. iXi i iXA(zx) i 11(z) = 1 —

has the nonminimum phase propertiesiif (z) does not have any 0721 — 0322, A1 (2) = 2 ' + 0722 + 042, Apa(2) =

common zeros in the z-plane. For example, the recovered signals _; R AP - 1 s
5:(t) under (12) are given as 27+ 0.727°+0427°, and Az2(2) = 1 —0.727" — 0.327°.

Two sentences spoken by two male speakers are used as the origi-

51(t) = Gu(Z)ygl) (t) + G21(2)y§2) (t), (15) nal speech samplegt). The sampling frequency is 8 kHz and the

a _ (2) (1) length of speech is limited to 7 seconds. The number of iterations
t) = t) + t). 16

52(t) Gi2(2)y, " (1) + G22(2)ys * (1) (16) in ICA is 15000.

The accurate estimation of the filter lengthof the room im- We carry out the following two experiments.

pulsg respanses Is indispensable fo_r improving the system identi'(Experiment 1) We evaluate SIMO-ICA while the length of the
fication performance. There are various methods for filter-length separation filterD, is varied from 4 to 128 taps. We change the

estimation and we use the Furuya’s method [7] in this work. step-size parameteramongl x 105 ~ 2x 10~°, and se3 to be

3.3. Discussion on identifiability 6 x 107*, and we find optima which give the best performances.
] ) ] ] o ] (Experiment 2) We compare three methods as follows: (a) con-

In this section, we first derive the entire filter used in the proposed yentionalholonomic ICA (ICA-based BSD) [1] given by (5), (b)

method. Secondly we discuss the channel identifiability of the pro- conventionalnonholonomic ICA [4] given by (14) with setting

posed BSD. . =0, and (c)proposed two-stage BSDIn SIMO-ICA, the step-
Using (6) and (7), we can express the recovered source signalssjze parameter is 2 x 10~¢ and3is 6 x 10~*. Also,nis1x10~°
(15) and (16) as in the holonomic ICA, andvis 1 x 10~° in the nonholonomic ICA;

W(ICAl)(z)

11 2 . . .
ICA2 icA2 of the separation filter is set to be 64 taps.
WD (z) WHAD(2) P ’

$1(0) = [Gu1(2),G21(2)] [
In these experiments, three objective evaluation scores are de-

W1<ICA1> (2 ] these are optima which provide the best performances. The length

~z(), 17) fined as described as follows. Fir&iMO-model accurac{SA) is
W ICA2) (2) W IcA2) (2) defined as1 <Hresz(t) ”2>
52(t) = [Gr2(2), G22(2)] |: fica) dean SA; = — 101log £ , (21
Wor 7 (z) Way 7 (2) K Xk: 10 { (Ily” () — refu(®)I?), }
-x(t). (18) . -
whererefri(t) = Awi(z)si(t). The SAis used as to indicate a
Thus, we obtain the entire input-output relation, degree of similarity between the SIMO-ICA's outpLytg) (t) and
. . T _ SIMO-model-based signale fr:(t). Secondly,noise reduction
[31(1), 52(1)] = W(2)=(t), (19) rate(NRR) [12], defined as the output signal-to-noise ratio (SNR)
in dB minus the input SNR in dB, is used as the objective indica-
where : . .
- tion of separation performance, where we do not take into account
W(z) the distortion of the separated signal. The SNRs are calculated un-
B Gii(z WﬁCA”(z) + Gzl(z)WﬁCM)(z), der the assumption that the speech signal of the undesired speaker

) h . : O e .

(ICA2) (ICA1) is regarded as noise. Thirdigel cepstral distortio(melCD) is
Gr2(2)Wiy (2) + G2 (2)W3, (2), used as the indication of deconvolution performance. In this study,
G11 (2)WESAY (2) 4 Goy (2) WA (2 we defined the melCD as the distance between the spectral enve-
Glz(z)W(ICA2)(Z) n G22(Z)W(ICA1)(Z) - (20) lope of the original source signaj(t — D/2) and that of the sep-

12 22 arated output. The 40th-order Mel-scaled cepstrum based on the
= smoothed FFT spectrum is used. The melCD will be decreased to

W (z) is the resultant separation filter matrix, and is represented Zero if the separation-deconvolution processing is performed per-
as a square (22) polynomial matrix with a finite order of less fectly P P gisp P

thanD + N — 1. Here, N corresponds to the length of the mul-
tichannel inverse filteG;; (=), and is automatically determined in ~ 4.2. Results and discussion

accordance with the length ol(z). On the other handD, the Figure 1 shows the results of SA, where the SA increases as the

length of the separation filte§ ") (=) in SIMO-ICA, can be length of the separation filte), is increased to more than the
arbltranly setby the user. oo length of the mixing system. In particular, the SA of about 30 dB,

. Previous studies [9, 10, 11] have indicated that the channelynich s sufficiently accurate for the following deconvolution pro-
identification cannot be realized in the casdiof= L withoutspe-  egg is achieved when the filter length is set to 64 taps. Thus, the

cial assumptions. Thferefore the proposed BSD calnnot.obtain theg|MO-ICA can reproduce the SIMO-model-based signals using
exact source signals in theory because the entire filter is a squargyq gyfficiently long filter. This result supports the discussion on
polynomial matrix. Since the deconvolution in the second stage e jgentifiability of the proposed method as described in Sect. 3.3.
can be performed exactly, itis considered that the separationtothe  \when the channel identification was performed in the sec-

SIMO model in the first stage includes a few residuals. In prac- onq siage, the proposed method could blindly estimate the length
tice, how_ever, we can reduc_e_the reS|duaIs_ by setting filter !ength of a(n) at four taps successfully by using an existing Furuya’s
D in the first stage to be sufficiently long; this can be shown in the \athog [7] for SIMO model.

next simulation. Thus, the SIMO-model-based signals are approx- Figure 2 shows the results of NRR and melCD for different

imately reproduced in thi's case. Overall, the identifiability almost athods. From the results of NRR, it is evident that the separation
holds under the assumption that we are allowed to use the long FIRperformance of the holonomic ICA is too poor, but those of the

filters in SIMO-ICA as well as (A1) and (A2).
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Fig. 1. SIMO-model accuracy of SIMO-ICA with different filter
length.
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Fig. 2. Simulation Results for different methods with regard to (a)
noise reduction rate, and (b) cepstral distortion.

proposed method and the nonholonomic ICA are high and compa-

rable as far as the only separation performance is concerned. As

for the distortion of the separated speech, which is an important

issue from the practical viewpoint, there is a considerable differ- [11]
ence between these methods, and this will be discussed in the next.

From the results of melCD, first, it is evident that the melCD of
the holonomic ICA is obviously high, i.e., the resultant speech is

whitened by the decorrelation in the conventional method. Next, [12]

the result of the nonholonomic ICA shows that there are still some
distortions in the separated signals. Finally, regarding the results of
the proposed method, there is a considerable reduction of melCD.
These results indicates that the proposed BSD algorith can suc-
cessfully achieve th separation and deconvolution for a convolu-
tive mixture of temporally correlated signals using the sufficiently
long separation filter in SIMO-ICA.

5. CONCLUSION

We proposed a new BSD framework in which SIMO-ICA and
blind multichannel inverse filtering are efficiently combined. In
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(10]

order to evaluate its effectiveness, a separation-deconvolution ex-
periment was carried out assuming 2 microphones and 2 speech
sources. The simulation results revealed that the conventional ICA-
based method includes adverse spectral distortion due to the inher-
ent whitening effect, and the spectral distortion can be consider-

ably reduced by using the proposed two-stage BSD algorithm.
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