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ABSTRACT

The use of partial update adaptive filters for stereophonic acoustic
echo cancellation is investigated. The MMax-NLMS algorithm is
studied in this context and its inherent robustness to subsampling
of the tap-input vector is demonstrated. It is proposed to employ
the subsampling of the tap input vector, that is intrinsic to par-
tial update schemes, to decorrelate the two tap-input vectors of the
stereo adaptive structure thereby enhancing convergence. We in-
vestigate the trade-off between improvement in convergence due
to decorrelation of the two tap-input vectors and degradation in
convergence due to subsampling in the MMax-NLMS partial up-
date scheme. The exclusive MMax-NLMS (XM-NLMS) is pro-
posed which approximates the joint optimization of these factors
and simulation results are presented.

I. INTRODUCTION

Direct application of adaptive filters to the problem of stereophonic
acoustic echo cancellation (SAEC) is known to be ineffective due
to the high coherence between the two input signals. This has
led to several approaches to the problem that involve techniques
to decorrelate the two input signals using, for example, non-linear
processing [1] or additive signals [2]. Furthermore, the compu-
tational complexity of stereophonic echo cancellers can be high
because the number of taps can be large and also because the
use of least-squares-based algorithms is often preferred in order
to obtain sufficient levels of cancellation. Therefore, there exists a
dual motivation to develop algorithms which have improved con-
vergence performance due to reduction of interchannel coherence
whilst maintaining computational complexity to be as low as pos-
sible for practical reasons.

In partial update adaptive filtering, the tap-input vector is sub-
sampled so that only a subset of filter taps is updated at each iter-
ation [3] [4]. The aim of this work is to investigate whether such
subsampling can bring a reduction in the inter-channel coherence
of the tap-input vectors that results in improved convergence.

The problem has been structured as a joint optimization of two
scores - one describing the inter-channel coherence between the
tap-input vectors and the other describing the ‘closeness’ of the
tap selection to that of the MMax-NLMS scheme. In this context,
the ideal tap selection is therefore one which selects the elements
of the tap input vectors such that the inter-channel coherence is
minimized whilst maximizing theirL1 norm.

A brief discussion of MMax-NLMS is presented in Section II.
We shall look at the effect of decorrelation in Section III. Section
IV presents XM-NLMS algorithm while Section V concludes the
present work and discusses the ongoing research work.
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Fig. 1. Effect of subselecting update weights on squared Euclidean Norm

II. MMax-NLMS ALGORITHM

In the MMax-NLMS algorithm [5], only the weights correspond-
ing to theM largest tap inputs are updated at each iteration. It has
been shown that, under specified conditions, the rate of conver-
gence of MMax-NLMS depends onM whilst the same final mis-
adjustment as the NLMS is achieved. To show the robustness of
the MMax-NLMS, (1) and (2) establish the relationship between
the convergence rate and the squared Euclidean norm of the tap-
input vectorx(n) for a single channel environment.

‖ε(n + 1)‖2 − ‖ε(n)‖2 = µ2‖x(n)‖2e2(n)− 2µe2(n) (1)

‖ε(n)‖2 =

L−1∑
i=1

(hi(n)− h̃i(n))2 (2)

wherehi(n) andh̃i(n) are the impulse response of the receiv-
ing room and the adaptive filter tap weights respectively. We also
define,µ, as the adaptive step size,e(n) is the difference between
desired signal and the output of the adaptive filter of lengthL.

Figure 1 shows the effect of sub-selection on‖x(n)‖2 for
an FIR filter of lengthL=256. For every value ofM < L, the
squared Euclidean Norm of theM highest inputs is measured and
plotted over 100 trials. The white noise inputx(n) is of zero
mean and unit variance. It can be seen that within the region
128 ≤ M ≤ 256, there is only a modest reduction in‖x(n)‖2.
In the regionM ≤ 128, there is an approximate exponential



reduction in‖x(n)‖2. Using this relationship and (1), one can see
that there is only a modest reduction in convergence rate when the
filter is operating within the region (0.5L ≤ M ≤ L).

III. THE EFFECT OF DECCORELATION IN SAEC

A serious problem encountered in stereophonic echo cancellers is
that the echo canceller coefficients do not necessarily converge to
the true impulse response of the echo path when full modelling of
the transmission room exists (nonuniqueness problem) [1] [6]. In a
practical case where the length of the filter is less than the impulse
response of the transmission room, the problem of nonuniqueness
is ameliorated to some degree. However, due to the strong co-
herence between the two channel input signals, the convergence
performance is poor and misalignment is a significant problem. To
overcome the misalignment problem, it is therefore desirable to
reduce the coherence between the two input channel signals.

Although the tap selection concept underlying partial update
algorithms, such as MMax-NLMS, is sometimes employed with
the aim of complexity reduction, this is not the case in this work.
Instead, we consider the use of tap selection to reduce the coher-
ence of the two channel inputs. It is also known that if the two
channels are highly coherent, the tap-input vectors are very sim-
ilar. This will cause the MMax-NLMS algorithm to select and
update the corresponding weights for the two filters. This does not
achieve our desired effect of decorrelating the signals. We there-
fore introduce an alternative tap selection criterion controlled by
two variables: magnitude weighting, to describe the ‘closeness’ of
the tap selection to that of the MMax-NLMS scheme, and coher-
ence weighting, to describe inter-channel coherence between the
subsampled tap-input vectors respectively.

For the following description of XM-NLMS, we assume a
standard FIR adaptive filter configuration. We defineA and C
being square matrices containing elementsaij = ‖x{αij}‖ and
cij = coh{αij} respectively where{αij} is a tap selection set
with i andj representing the indices for each channel of the differ-
ent combinations of selectingM out of L weights in each of the
two filters(i, j = 1, . . . ,L CM ). The absolute sum of the selected
tap inputs in a particular combinationi andj for the two channels
is defined as‖x{αij}‖ while coh{αij} is the coherence averaged
over frequency of the two tap-input vectors withL−M unselected
inputs in each channel set to zero. Elementsaij andcij are each
associated with a cost such that the least cost is allocated to com-
binations having the maximum magnitude inA and the minimum
coherence inC. The update equation incorporating tap selection is
given by:

h̃(n + 1) = h̃(n) + G(n)µ
x(n)e(n)

‖x(n)‖2 (3)

whereG(n) = diag{gij(n)} such that

gij(n) =

{
1 if i,j ∈ {αmin}
0 otherwise

where{αmin} is the tap selection set for minimum cost and

h̃ = [h̃
T
1 h̃

T
2 ]T
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Fig. 2. WEVN for (a) MMax-NLMS and XM-NLMS wm = 1, (b)
NLMS (c) XM-NLMS wm = 0.9, (d) XM-NLMS wm = 0.7, (e) XM-
NLMS wm = 0.1. L=6, M=3,µ = 0.6, γ = 0.9.

represents the concatenated weight vector of the two channel
filters whileT represents vector transposition. Magnitude Weight-
ing, wm, and coherence weighting,wc = 1 − wm, determine
the ‘closeness’ of the tap selection to that of the MMax-NLMS
scheme. A magnitude weighting of 1 corresponds to selecting co-
efficients for updating based on the MMax-NLMS algorithm only.

Figure 2 shows the weight error vector norm defined as [1]

WEV N =
‖h− h̃‖
‖h‖ (4)

for different values of magnitude weighting(wm =
0.1, 0.7, 0.9, 1.0). In this simulation, the two channel inputs are
zero mean and unit variance noise sequences. The coherence be-
tween the two channel inputs is controlled byγ (0 ≤ γ ≤ 1),
whereγ=0 represents independent signals andγ=1 implies the
two channel inputs being identical to one another. In this simula-
tion,γ=0.9 is used to reflect the high coherence of the two channel
weight input vectors in practical applications. The adaptive filters
have 6 taps per channel and for every iteration, 3 taps are updated
(L = 6, M = 3). For clarity, WEVN for only one of the two
channels is plotted for each case ofwm.

The simulation result shows thatwm=1 coincides with MMax-
NLMS where performance is close to that of the full update
NLMS. The highest convergence rate can be seen whenwm=0.1
(wc=0.9) where there is a high emphasis on selecting the exclu-
sive set of weights for updating. This is similar to finding (out of
LCM combinations) the exclusive set of weights for the two filters
such that the absolute sum of the subsampled tap-input vector is
maximized.

IV. XM-NLMS ALGORITHM

Consider initially a pair of adaptive filters (each of length
L=4) with tap input vectorsq = [q1, q2, q3, q4]

T and r =
[r1, r2, r3, r4]

T . Letd be the magnitude vector difference between
q andr such thatd = |q| − |r |,




|q1|
|q2|
|q3|
|q4|


−




|r1|
|r2|
|r3|
|r4|


 =




d1

d2

d3

d4


 . (5)



Our objective is to selectM out of L taps for updating for which
the corresponding (subsampled) tap-input vectors have the maxi-
mum absolute sum, so as to approximate MMax-NLMS as closely
as possible, but also have the minimum inter-channel coherence.
Whereas in principle an exhaustive search of all possible tap se-
lection sets could be made for smallL, the XM-NLMS algorithm
finds an approximation to the optimum tap selection by constrain-
ing the search to tap selections that are exclusive between the two
channels so as to minimize the inter-channel coherence. These ex-
clusive sets can be pre-determined for anyL andM . Within this
constrained search space, the tap selection with maximum abso-
lute sum can be found efficiently by sortingd. With reference to
(5), assumingd1 > d2 > d3 > d4, then we have

|q1|+ |q2|+ |r3|+ |r4| > |q3|+ |q4|+ |r1|+ |r2| (6)

sinced1 + d2 > d3 + d4. Thus tap weights corresponding to
inputq1, q2, r3 andr4 should be selected for updating. It is worth-
while noting that it is irrelevant to consider combinations{d1, d3},
{d1, d4}, {d2, d3}, {d2, d4} or {d3, d4} since the corresponding
tap selections in these combinations would give a smaller magni-
tude sum than the tap selection in combination{d1, d2}. This ap-
proach allows us to eliminate(LCM − 1) possible combinations.

We now consider two filters each of arbitrary lengthL where
we updateM taps from each filter. A typical case is whenM =
0.5L. We can extend (5) as,




|q1|
|q2|
.
.
.
|qL|



−




|r1|
|r2|
.
.
.
|rL|




=




d1

d2

.

.

.
dL




. (7)

As before, ifd1 > . . . > dM > . . . > dL, we now select taps
corresponding to inputs{q1, ..., qM} and{rM+1, ...rL}. Thus the
two tap input vectors of lengthL are ordered in descending order
of difference in absolute valued and the firstM taps of the ordered
vectors are selected for updating. Equation (8) shows the updating
equation of the XM-NLMS algorithm.

h̃(n + 1) = h̃(n) + G(n)µ
x(n)e(n)

‖x(n)‖2 (8)

whereG(n) = diag{gij(n)} such that

gij(n) =

{
1 if i,j ∈ {βmin}
0 otherwise

where{βmin} is the tap selection set for minimum cost sub-
ject to the above constraint that the selection is exclusive between
the two channels.

As can be seen from (8), XM-NLMS can be implemented
using a preprocessor block located at the input of the adaptive
filter pair. The purpose of this preprocessor block is to perform
the exclusive MMax tap selection. This structure separates the
tap selection from adaptive filter block and therefore enables us
to employ alternative adaptive filter blocks so as to form, for
example, the exclusive MMax recursive least squares algorithm
(XM-RLS).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

−12

−10

−8

−6

−4

−2

0

2

samples

W
E

V
N

(d
B

)

L= 128  M= 64  µ= 0.9

mmax−nlms 
nlms 

xm−nlms 

Fig. 3. WEVN for MMax-NLMS, NLMS and XM-NLMS (L=128,
M=64,µ = 0.9)
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Fig. 4. ERLE for MMax-NLMS, NLMS and XM-NLMS (L=128,M=64,
µ = 0.9)

V. RESULTS

The XM-NLMS algorithm was applied in an SAEC experiment us-
ing Gaussian noise with zero mean and unit variance as the input
sequence. The transmission room microphone signals were ob-
tained by convolving the source with two white Gaussian impulse
responsesg1(n) andg2(n) of length 800 withγ=0.9. The desired
response in the receiving room was obtained by summing the two
convolutions(h1 ∗ x1) and(h2 ∗ x2) whereh1 andh2 represent
the receiving room’s impulse responses. The method of images
[8] was used to generateh1 andh2 of length 800 which were sub-
sequently truncated to 128. The adaptive filters were of length
L=128, M=64 for the XM-NLMS and MMax-NLMS. Figure 3
shows the WEVN plot for NLMS, XM-NLMS and MMax-NLMS
algorithm. Figure 4 shows the corresponding segmental echo re-
turn loss enhancement (ERLE). For all our experiments, we have
used a step sizeµ = 0.9.

As expected, due to the decorrelating property, we can see
from Fig. 3 that XM-NLMS converges at a faster rate. As pointed
out in [1], the non-linear preprocessor is ineffective in conjunction
with NLMS. Thus, we have excluded the NLMS with non-linear
preprocessor in this experiment. The results of Fig. 5 show the
convergence performance of XM-RLS using a preprocessor block



0 1 2 3 4 5 6

x 10
4

−25

−20

−15

−10

−5

0

5

samples

W
E

V
N

(d
B

)
L= 128 M= 64  λ=0.999  α=0.5  δ=−1

rls 

nl−rls 

xm−rls 

Fig. 5. WEVN for RLS, XM-RLS and NL-RLS for zero mean unit vari-
anceg1 andg2. (L=128,M=64,λ=0.999,δ=-1,α=0.5)

explained in the previous Section. The input signal is white Gaus-
sian noise with zero mean and unit variance. We have used the
same impulse responses as before for both receiving and transmis-
sion rooms. The RLS parameters are as follows: forgetting factor
λ=0.999 and regularization parameterδ=-1 [7]. In NL-RLS the
non-linearity constantα = 0.5.

Figure 6 shows an additional result for the case when both the
transmission and receiving rooms’ impulse responses were gen-
erated using the method of images [8]. In this simulation, two
microphones are placed one meter apart in the center of each room
(size 3x4x5 metres). The source is then positioned such that it is
one meter away from each of the microphones in the transmission
room. The impulse responsesg1, g2, h1 andh2 are each of length
800. As before, we have used the following RLS parameters; for-
getting factorλ=0.999 and regularization parameterδ=0.015. The
convergence behavior is plotted in Fig. 6 for XM-RLS, RLS and
NL-RLS (over an average of 3 trials).

We can see from Fig 5 and Fig 6 that XM-RLS achieves an
improved rate of convergence compared to RLS. This is again
due to the intrinsic decorrelation property of the exclusive MMax
preprocessor block acting on the input signals.

V. CONCLUSION

In this paper, we have discussed the robustness of MMax-NLMS
to subsampling of the tap-input vector for a general single channel
case. We have also shown in SAEC how the two tap-input vectors
are effectively decorrelated using the MMax subsampling proce-
dure with a resulting improvement in convergence in WEVN. We
have tested the approach using room impulse responses generated
randomly and also realistically using room modelling with higher
order. An efficient technique has been proposed for determining
a tap selection set that gives an approximate joint optimization of
maximum absolute sum of the subsampled tap-input vectors and
minimum inter-channel coherence. Both NLMS and RLS adaptive
filters show improved convergence performance in SAEC when
used in conjunction with the partial updating scheme. Further test-
ing is underway with speech signals.
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