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ABSTRACT

Adaptive filters play an important role in signal processing and
several different categories appear in the literature. In this paper,
we discuss a class of adaptive algorithms calleddata-reuse. The
hope of a data-reuse adaptive algorithm is to improve the conver-
gence rate of the initial algorithm. We show, in particular, that the
so-called block exact normalized LMS is a block version of the
Schnaufer and Jenkins data-reuse NLMS, and show that many dif-
ferent forms of the latter exist but will not improve convergence or
reduce complexity (compared to the initial form). We also discuss
the structure and efficiency of these algorithms.

1. INTRODUCTION

The literature is rich in adaptive algorithms. Many efforts have
been made during the last three decades to derive adaptive filters
that converge faster and/or are more efficient from a complexity
point of view than the classical least mean square (LMS) algorithm
[1]. There are different categories of adaptive filtering: sample-by-
sample, block, block exact, and data-reuse. The hope is that a data-
reuse adaptive algorithm improves the convergence rate of the ini-
tial algorithm. While this is true in general, a data-reuse algorithm
is, however, very inefficient when it comes to implementation.

In this paper, we discuss different forms of data-reuse adaptive
filters and show some links with other algorithms. In particular,
we show that the so-called block exact normalized LMS is a block
version of the Schnaufer and Jenkins data-reuse NLMS, and show
that many different forms of the latter exist but will not improve
convergence or reduce complexity (compared to the initial form).

First, let us define the LMS algorithm:

e(n) = y(n) − ŷ(n), (1)

ĥ(n + 1) = ĥ(n) + µx(n)e(n), (2)

wheree(n) is the error signal at timen between the system output

y(n) = hT x(n) (3)

and model filter output

ŷ(n) = ĥT (n)x(n), (4)

h =
[

h0 h1 · · · hL−1

]T

is the impulse response of the system,

ĥ(n) =
[

ĥ0(n) ĥ1(n) · · · ĥL−1(n)
]T

is the model filter,

x(n) =
[

x(n) x(n − 1) · · · x(n − L + 1)
]T

is a vector containing the lastL samples of the input signalx,
superscriptT denotes transpose of a vector or a matrix, andµ is
the step-size parameter (0 < µ < 2/λmax, whereλmax is the
maximum eigenvalue of the input signal’s correlation matrix).

The first data-reuse adaptive algorithm was introduced by
Shaffer and Williams [2] (and also independently by Nitzberg [3])
for the LMS algorithm and consists of reusing the same dataN
times. The data-reuse LMS (DR-LMS) algorithm is then given by
the following equations:

• Step 1: Initialization : i = 0

e(n) = e0(n), ĥ0(n) = ĥ(n) (5)

• Step 2: Loop : While i ≤ N − 1

ei(n) = y(n) − ĥT
i (n)x(n) (6)

ĥi+1(n) = ĥi(n) + µx(n)ei(n), i = i + 1 (7)

• Step 3: Update

ĥ(n + 1) = ĥN (n), n = n + 1, Goto Step 1. (8)

It is clear thatN = 1 reduces to the standard LMS update. It can
easily be shown (see [4]) that the above algorithm can be rewritten
as:

ei(n) = e(n)[1 − µxT (n)x(n)]i, i = 0, ..., N − 1, (9)

ĥ(n + 1) = ĥ(n) + µx(n)

N−1∑
i=0

ei(n), (10)

but

N−1∑
i=0

ei(n) =
e(n){1 − [1 − µxT (n)x(n)]N}

µxT (n)x(n)
. (11)

Hence

ĥ(n + 1) = ĥ(n) +
x(n)

xT (n)x(n)
e(n){1 − [1 − µxT (n)x(n)]N},

so whenN → ∞, the DR-LMS is a special case (α = 1) of the
normalized LMS (NLMS) algorithm which is defined as follows
[5]:

ĥ(n + 1) = ĥ(n) +
αx(n)

xT (n)x(n)
e(n), (12)



whereα is a normalized step size. (From here on, for simplicity,
we will suppress the step sizeα, with the understanding that it can
always be reintroduced in any of the algorithms we discuss.) Thus,
the DR-LMS algorithm has a convergence rate that lies between
the LMS and NLMS algorithms. Obviously, from a practical point
of view, the DR-LMS is not very attractive since it requires an infi-
nite complexity to attain the performance of the NLMS. The only
interesting thing about it is that it does not require any division
unlike the NLMS.

2. THE BLOCK EXACT NLMS ALGORITHM

The block exact NLMS (BENLMS) algorithm is a block adaptive
algorithm; it updates the coefficients of the filter only once per
block N . The following equations summarize the algorithm (for
more details, see [6]):

ea(n) = y(n) − XT (n)ĥ(n − N + 1), (13)

ĥ(n + 1) = ĥ(n − N + 1) + X(n)S−1(n)ea(n), (14)

where

ea(n) =
[

ea(n) ea(n − 1) · · · ea(n − N + 1)
]T

,

ea(n − i) = y(n − i) − xT (n − i)ĥ(n − N + 1),

y(n) =
[

y(n) y(n − 1) · · · y(n − N + 1)
]T

,

X(n) =
[

x(n) x(n − 1) · · · x(n − N + 1)
]
,

S(n) =




s0(n) · · · 0
...

...
...

sN−1(n) · · · s0(n − N + 1)


 ,

si(n) = xT (n)x(n − i), i = 0, 1, ..., N − 1.

The BENLMS and NLMS algorithms are mathematically equiva-
lent. Hence, they have the same performance. The only difference
between the two is that the BENLMS calculates the coefficients of
the filter everyN samples (so it has to wait forN new samples
before starting to process them) instead of every sample for the
NLMS. The advantage of the block approach, though, is that be-
cause of the redundancy [note thatX(n) used in (13) and (14) is a
Hankel matrix], the arithmetic complexity can be significantly re-
duced compared to a sample-by-sample approach by using divide-
and-conquer techniques or the fast Fourier transform as an inter-
mediary step [6].

3. THE SJ-DR-NLMS AND BENLMS ALGORITHMS

The Schnaufer and Jenkins DR-NLMS (SJ-DR-NLMS) algorithm
[7] is an improved version of the DR-LMS algorithm where in-
stead of iterating with an LMS on the same present data, the SJ-
DR-NLMS algorithm iterates with data from the past and present
with an NLMS. The SJ-DR-NLMS algorithm is defined as follows:

• Step 1: Initialization : i = 0

e(n) = e0(n), ĥ0(n) = ĥ(n) (15)

• Step 2: Loop : While i ≤ N − 1

ei(n) = y(n − i) − ĥT
i (n)x(n − i) (16)

ĥi+1(n) = ĥi(n) +
x(n − i)

xT (n − i)x(n − i)
ei(n) (17)

i = i + 1 (18)

• Step 3: Update

ĥ(n + 1) = ĥN (n), n = n + 1, Goto Step 1. (19)

We can see from the previous equations that the only two
differences with the DR-LMS, is that, at iterationi, we use
x(n − i) [resp. y(n − i)] instead ofx(n) [resp. y(n)] and
1/

[
xT (n − i)x(n − i)

]
instead ofµ.

We now propose to rewrite the SJ-DR-NLMS algorithm dif-
ferently. At iterationi = 0, we have:

e0(n) = y(n) − ĥT (n)x(n), (20)

ĥ1(n) = ĥ(n) +
x(n)

xT (n)x(n)
e0(n). (21)

At iterationi = 1, we have:

e1(n) = y(n − 1) − ĥT
1 (n)x(n − 1), (22)

ĥ2(n) = ĥ1(n) +
x(n − 1)

xT (n − 1)x(n − 1)
e1(n). (23)

Replacingĥ1(n) in (22) and (23) by (21), we get respectively:

e1(n) = y(n − 1) − ĥT (n)x(n − 1) − xT (n − 1)x(n)

xT (n)x(n)
e0(n),

(24)

ĥ2(n) = ĥ(n)+
x(n)

xT (n)x(n)
e0(n)+

x(n − 1)

xT (n − 1)x(n − 1)
e1(n).

(25)
Continuing the same process until iterationN − 1, we obtain ex-
actly:

ea(n) = y(n) − XT (n)ĥ(n), (26)

ĥ(n + 1) = ĥ(n) + X(n)S−1(n)ea(n), (27)

where all the variables used here were defined in the previous sec-
tion. Comparing the rewritten SJ-DR-NLMS [(26)–(27)] and the
BENLMS [(13)–(14)], we can see that the two algorithms have
the same structure; the only difference is that the adaptive weight
is held constant over a block for the BENLMS, whereas it is al-
lowed to update on each sample for the SJ-DR-NLMS. Hence, the
SJ-DR-NLMS converges to the Wiener solution and converges, in
principle, faster than NLMS (or equivalently BENLMS). Since the
NLMS is a one-dimensional affine projection algorithm (APA), so
is the SJ-DR-NLMS. The multi-dimensional APA [8] is:

ea(n) = y(n) − XT (n)ĥ(n), (28)

ĥ(n + 1) = ĥ(n) + X(n)
[
XT (n)X(n)

]−1

ea(n). (29)

We can easily see that the lower triangular parts of the two ma-
tricesS(n) andXT (n)X(n) are identical. Note thatS(n) is not
symmetric and all the elements above the main diagonal are ze-
roes. So we should not expect the SJ-DR-NLMS [(26)–(27)] to
perform as well as the APA [(28)–(29)].

The comparison between the BENLMS and SJ-DR-NLMS is
similar to the comparison between the multi-delay filter (MDF)
[9] and generalized MDF (GMDF) [10]. Recall that the MDF is
a frequency-domain adaptive algorithm using a block size smaller
than the length of the adaptive filter, where the coefficients of this
filter are adjusted once per block, while in the GMDF these coeffi-
cients can be adjusted more often within the same block, depend-
ing on the overlapping factor. This results in an increase of the



convergence rate. In the BENLMS, the coefficients are updated
once per block while they are updatedN times per block for the
SJ-DR-NLMS. In other words, the BENLMS is a block version
of the SJ-DR-NLMS, like the partial rank (PRA) algorithm [11],
defined as

ea(n) = y(n) − XT (n)ĥ(n − N + 1), (30)

ĥ(n + 1) = ĥ(n − N + 1)

+X(n)
[
XT (n)X(n)

]−1

ea(n), (31)

is a block version of the APA. While BENLMS is a block version
of SJ-DR-NLMS, it is however a block exact version of NLMS.

The SJ-DR-NLMS as given at the beginning of this section
is highly inefficient from a complexity point of view. It requires
2NL operations per time sample compared to2L for the NLMS.
In any application, it will be preferable to use BENLMS, PRA,
or APA since there are many ways to implement these algorithms
with much less complexity. For example, the BENLMS and PRA
can be implemented with fewer number of operations than NLMS
while exhibiting the same or better performance. However, the
SJ-DR-NLMS as shown in (26)–(27) can be computed rather effi-
ciently in2L+O(N2) operations by borrowing some of the ideas
used in the fast affine projection algorithm [12] and noticing that
S(n) is a triangular matrix and all its elements can be computed
recursively. So whenN � L, which is the case with long adap-
tive filters, the complexity of the SJ-DR-NLMS is comparable to
the NLMS but with a faster convergence rate.

4. OTHER VERSIONS OF THE SJ-DR-NLMS
ALGORITHM

In the loop (Step 2) of the SJ-DR-NLMS algorithm, the iterative
process starts withx(n) [resp.y(n)] and finishes withx(n−N +
1) [resp. y(n − N + 1)]. Actually, the order in which we use
this data should not change the behaviour of the algorithm as long
as the impulse response that we want to identify is stationary. We
can, for example, start the iterative process withx(n − N + 1)
[resp. y(n − N + 1)] and finish withx(n) [resp. y(n)]. In this
case, the algorithm becomes:

• Step 1: Initialization : i = 0

ĥ0(n) = ĥ(n) (32)

• Step 2: Loop : While i ≤ N − 1

ei(n) = y(n − N + 1 − i) − ĥT
i (n)x(n − N + 1 − i)

(33)

ĥi+1(n) = ĥi(n)

+
x(n − N + 1 − i)

xT (n − N + 1 − i)x(n − N + 1 − i)
ei(n) (34)

i = i + 1

• Step 3: Update

e(n) = eN−1(n) (35)

ĥ(n + 1) = ĥN (n), n = n + 1, Goto Step 1. (36)

It can be checked that the above algorithm is equivalent to:

ea(n) = y(n) − XT (n)ĥ(n), (37)

ĥ(n + 1) = ĥ(n) + X(n)
[
ST (n)

]−1

ea(n). (38)
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Fig. 1. Behavior of the NLMS algorithm withα = 0.5. (a) MSE
(–) as compared to the output signal level (– –). (b) Misalignment.

In the version of the previous section, the algorithm is normalized
with a lower triangular matrix [S(n)], while in the version given
above, the algorithm is normalized with an upper triangular matrix
[ST (n)]. This is the only difference between the two algorithms.
Amazingly, even with this difference of normalization, the algo-
rithms should have the same performance.

In the general case, depending in which order the data in the
loop is processed, the adaptive algorithm will have the following
form:

ea(n) = y(n) − XT (n)ĥ(n), (39)

ĥ(n + 1) = ĥ(n) + X(n)S−1
p (n)ea(n), (40)

where the matrixSp(n) has its elements organized in the same or-
der as the data is processed. Note, in general, that matrixSp(n)
is not only constrained to be upper or lower triangular, but can be
more generally obtained fromS(n) by simple permutation of its
elements. First, matrixS(n) has exactlyN(N − 1)/2 elements
(above the main diagonal) that are equal to zero. The general ma-
trix Sp(n) must be built according to the following rules:

• The main diagonal ofSp(n) must be the same as the main
diagonal ofS(n),

• N(N − 1)/2 elements ofSp(n) must be equal to zero,

• Two or more lines of the matrixSp(n) must not have the
same number of zeroes.

Under this scenario, we will always have:

XT (n)X(n) = Sp(n) + ST
p (n) − diag{Sp(n)}. (41)

Again, the adaptive algorithm given by (39)–(40) with any ma-
trix Sp(n) following the previous rules should have the same per-
formance as the original SJ-DR-NLMS.

5. SIMULATIONS

In this section, we compare by way of simulations, the NLMS,
APA, and two versions of the SJ-DR-NLMS. The impulse re-
sponseh to be identified is of lengthL = 128. The same length
is used for all the adaptive filterŝh(n). The input signalx(n) is
a 5 second speech signal sampled at8 kHz. The signal-to-noise
ratio is equal to30 dB. All the algorithms were slightly modified.
Indeed, for stability, we add a regularization parameterδ = 20σ2

x

to the diagonal ofS and multiply the error signal with a step-size
α (0 < α ≤ 1).

Figures 1, 2, 3, and 4 show the mean-squared error (MSE)
and the normalized misalignment,‖h − ĥ(n)‖/‖h‖, for all the
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Fig. 2. Behavior of the APA algorithm withα = 0.2 andN =
10. (a) MSE (–) as compared to the output signal level (– –). (b)
Misalignment.
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Fig. 3. Behavior of the SJ-DR-NLMS algorithm withα = 0.2,
N = 10, and normalized withS(n). (a) MSE (–) as compared to
the output signal level (– –). (b) Misalignment.

algorithms. In Fig. 1, the NLMS algorithm is used withα = 0.5.
In Fig. 2, we used the APA withα = 0.2 andN = 10. Figures 3
and 4 show the SJ-DR-NLMS when it is normalized respectively
with S(n) andST (n); for both algorithms, we have chosenα =
0.2 andN = 10. As expected, we can see that the APA and SJ-
DR-NLMS perform better than NLMS. There is little difference
between the APA and SJ-DR-NLMS. Also, the two versions of
SJ-DR-NLMS are almost identical.

6. CONCLUSIONS

The way the data-reuse adaptive algorithms are presented is highly
inefficient from a complexity point of view. There is always a
strong need to rewrite these algorithms in a way that shows redun-
dancy and make links with other existing algorithms. For example,
we showed that the BENLMS is a block version of the SJ-DR-
NLMS while it is also a block exact version of the NLMS. We also
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Fig. 4. Behavior of the SJ-DR-NLMS algorithm withα = 0.2,
N = 10, and normalized withST (n). (a) MSE (–) as compared
to the output signal level (– –). (b) Misalignment.

showed that the SJ-DR-NLMS can be written in many other forms
with different normalization, depending in which order the data
is processed. Amazingly, even this change of normalization will
not change the behavior of the algorithm. A data-reuse adaptive
filter might be sometimes useful in practice but only if it can be
implemented efficiently.

Our conclusions are that data-reuse algorithms present some
interest in theory but are almost useless in practice if their struc-
ture can not be modified. Many existing algorithms that are able to
perform better with much less complexity will be preferred. How-
ever, if a data-reuse algorithm can be rewritten in a way that shows
redundancy and allows a derivation of an efficient version, it might
find some practical interest.
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