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ABSTRACT

This paper deals with the problem of speech enhancement
when a corrupted speech signal with an additive noise is the
only information available for processing. Kalman filter-
ing is known as an effective speech enhancement technique
in which speech signal is usually modeled as autoregressive
(AR) process and represented in the state-space domain. In
the above context, all the Kalman filter-based approaches
proposed in the past operate in two steps: they first esti-
mate the noise and the driving variances and parameters
of the signal model, then estimate the speech signal. This
paper presents an alternative solution that does not require
the explicit estimation of noise and driving process vari-
ances. This deals with a new formulation of the steady-state
Kalman filter gain estimation based on the use of external
description of systems. Unlike the conventional approaches,
no suboptimal Kalman filter is needed here.

1. INTRODUCTION

Speech enhancement using a single microphone system has
become an active research area for audio signal enhance-
ment. The aim is to minimize the effect of noise and to
improve the performance in voice communication systems
when input signals are corrupted by background noise.

Kalman filtering is known as an effective speech en-
hancement technique, in which speech signal is usually mod-
eled as autoregressive (AR) process and represented in the
state-space domain.

Many approaches using Kalman filtering have been ref-
erenced in the literature. They usually operate in two steps:
first, noise and driving process variances and speech model
parameters are estimated and second, the speech signal
is estimated by using Kalman filtering. In fact these ap-
proaches differ only by the choice of the algorithm used to
estimate model parameters and the choice of the models
adopted for the speech signal and the additive noise.

Paliwal and Basu [1] have used estimates of the speech
signal parameters from clean speech, before being contam-
inated by white noise. They then used a delayed version of
Kalman filter in order to estimate the speech signal.

In [2], Oppenheim et al. have used a time-adaptive algo-
rithm to adaptively estimate the speech model parameters
and the noise variance.

Gannot et al. [3] have proposed the use of the EM
algorithm to iteratively estimate the spectral parameters of

speech and noise parameters. The enhanced speech signal
was obtained as a byproduct of the parameter estimation
algorithm.

Lee and Jung [4] have developed a time-domain ap-
proach, with no a priory information, to enhance speech
signals. The autoregressive-hidden filter model (AR-HFM)
with gain contour was proposed for modeling the statisti-
cal characteristics of the speech signal. The EM algorithm
was used for signal estimation and system identification. In
the E-step, the signal was estimated using multiple Kalman
filters with Markovian switching coefficient and the proba-
bility was computed using the Viterbi Algorithm (VA). In
M-step, the gain contour and noise parameter were recur-
sively updated by an adaptive algorithm.

Grivel et al. [5] have suggested that the speech en-
hancement problem can be stated as a realisation issue in
the framework of identification. The state-space model was
identified using a subspace non-iterative algorithm based on
orthogonal projection.

Gabrea and O’Shaughnessy [6] have proposed estimat-
ing the noise and driving process variances using the prop-
erty of the innovation sequence, obtained after a prelimi-
nary Kalman filtering with an initial gain.

The methods proposed in [7] and [8] avoid the explicit
estimation of noise and driving process variances by es-
timating the optimal Kalman gain. After a preliminary
Kalman filtering with an initial sub-optimal gain, an iter-
ative procedure is derived to estimate the optimal Kalman
gain using the property of the innovation sequence.

In this paper a quite different and simple approach to
the estimation of the steady-state optimal Kalman filter
gain based on the use of external description of systems is
presented. This method avoids the explicit estimation of
noise and driving process variances by estimating the opti-
mal Kalman gain. Unlike the conventional approaches, no
suboptimal Kalman filter is needed here. Thus, the diver-
gence problem of the Kalman filter does not occur. The
performance of this algorithm is compared to the one of
alternative speech enhancement algorithms based on the
Kalman filtering. A distinct advantage of the proposed al-
gorithm is that no voice activity detector (VAD) is required
to estimate noise variance. Another advantage of this algo-
rithm compared to [7] and [8] is the superiority in terms of
computational load. An iterative procedure is not required
in the steady-state optimal Kalman gain estimation.

This paper is organized as follows. In Section II we



present the speech enhancement approach based on the Kal-
man filter algorithm. Section III is concerned with the esti-
mation of AR parameters and optimal Kalman gain. Sim-
ulation results are the subject of Section IV.

2. NOISY SPEECH MODEL AND KALMAN

FILTERING

The speech signal s(n) is modeled as a pth-order order AR
process:

s(n) =

p
∑

i=1

ais(n − i) + u(n) (1)

y(n) = s(n) + v(n) (2)

where s(n) is the nth sample of the speech signal, y(n) is
the nth sample of the observation, ai is the ith AR param-
eter, u(n) and v(n) are uncorrelated Gaussian white noise
sequences with zero means and the variances σ2

u and σ2

v.
This system can be represented by the following state-

space model:

x(n + 1) = Fx(n) + Gu(n + 1) (3)

y(n) = Hx(n) + v(n) (4)

where:

1. x(n) = [s(n−p+1) · · · s(n)]T is the p×1 state vector,

2. F is the p × p transition matrix
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3. H = GT =
[

0 0 · · · 0 1
]

are, respectively,
the 1×p observation row vector and the input vector.

The standard Kalman filter [9] provides the updating
state-vector estimator equations:

e(n) = y(n) − Hx̂(n/n − 1) (5)

x̂(n + 1/n) = Fx̂(n/n − 1) + FK(n)e(n) (6)

where:

1. x̂(n/n − 1) is the minimum mean-square estimate of
the state vector x(n) given the past observations y(1),
. . ., y(n − 1),

2. e(n) is the innovation sequence,

3. K(n) is the Kalman gain.

The estimated speech signal can be retrieved from the
state-vector estimator:

ŝ(n) = Hx̂(n/n − 1) + HK(n)e(n) (7)

The noise variances σ2

u and σ2

v are needed to compute
the Kalman gain K(n):

K(n) = P(n/n − 1)HT

×

[

HP(n/n − 1)HT + σ2

v

]−1

(8)

P(n + 1/n) = F [I − K(n)H]P(n/n − 1)FT

+ σ2

u (9)

where P(n/n − 1) is the predicted state-error correlation
matrix.

However, the transition matrix and the Kalman gain
are unknown and hence must be estimated. The parameter
estimation (the transition matrix and the optimal Kalman
gain) is presented in the next section.

3. PARAMETER ESTIMATION

The estimation of the transition matrix, which contains the
AR speech model parameters, was made using the modified
Yule-Walker equations. The estimation of the steady-state
optimal Kalman filter gain is based on the external descrip-
tion of the systems.

3.1. Estimation of the Transition Matrix

In our approach, getting F requires the AR parameter es-
timation. This issue being outside the scope of the present
paper we propose to estimate the AR parameters from mod-
ified Yule-Walker equations [10], even if this approach may
sometimes lead to unsatisfactory performances, especially
for wideband signals [11]:
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where ryy(k) = E[y(n)y(n − k)] denotes the observation
autocorrelation function, E[.] denotes the expectation, [.]†

denotes the pseudoinverse operator and l ≥ 0.

3.2. Steady-State Optimal Kalman Gain Estima-

tion

The Kalman filter always requires the knowledge of noise
variances. When they are unknown, we must estimate them
with some methods or we must estimate the steady-state
optimal Kalman filter gain Kopt = limn→∞ K(n) directly
from the output data. Let f(z) = zm + α1z

m−1 + · · ·+ αm

be the minimal polynomial of the matrix F with f(F) = 0.
From (5) and (6) in the steady-state:

y(n − m + i) = HF
i
x̂(n − m/n − m − 1)

+

i−1
∑

j=0

HF
i−j

K
opte(n − m + j) (11)

+ e(n − m + i)



and multiplying (11) by αm−i (α0 = 1) and summing for
i = 0, 1, · · · , m we obtain:

m
∑

i=0

αm−iy(n − m + i)

=
m

∑

i=0

αm−i

i−1
∑

j=0

HF
i−j

K
opte(n − m + j) (12)

+
m

∑

i=0

αm−ie(n − m + i)

or:

y(n) +

m
∑

i=1

αiy(n − i) = e(n) +

m
∑

i=1

βie(n − i) (13)

where:

βi = αi +
i−1
∑

j=0

αjHF
i−j

K
opt, i = 1, · · · , m (14)

We can obtain the optimal gain Kopt by solving (14)
with the knowledge of βi for i = 1, · · · , m. Define:

ε(n) = e(n) +

m
∑

i=1

βie(n − i) (15)

It is known that in the optimal case the innovation process
e(n) is orthogonal to all past observations y(1), . . ., y(n−1)
and it consists of a sequence of random variables that are
orthogonal to each other. In this case the autocorrelation
of the innovation process re(k) = E[e(n)e(n−k)] is zero for
k > 0 [12]. From (15) for k = 0, 1, · · · , m we obtain rε(k)
the autocorrelation of ε(n), rε(k) = E[ε(n)ε(n − k)] as:

rε(k) = re(0)

m
∑

i=k

βiβi−k, β0 = 1 (16)

The equations (16) can be solved for βi = 1, i = 1, · · · , m
and re(0) by using the estimate of the autocorrelation r̂ε(k):

r̂ε(k) =
1

N

N
∑

i=1

εiεi−k (17)

where N is the sample size and ε(n) is given by :

ε(n) = y(n) +
m

∑

i=1

αiy(n − i) (18)

Now from (14) the estimate of the optimal gain K̂opt is
given by:

K̂
opt =
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4. SIMULATION RESULTS

The proposed method was first tested using an AR signal
that offers a good approximation of the spectral envelope
of a speech signal and an additive Gaussian white noise. In
the experiment, 256 samples of the AR signal were gener-
ated. In Table 1 we present the mean value, the standard
deviation and the maximum value based on 1000 simula-
tions.

Output SNR
Input SNR Mean Std Max

(dB) (dB) (dB) (dB)

-5.00 2.93 0.48 4.46
0.00 5.72 0.29 7.33
5.00 9.82 0.21 11.27

10.00 12.71 0.15 13.72
15.00 17.08 0.07 17.31

Table 1: Output SNR for an Input AR Signal plus

White Noise

Figure 1 represents, respectively, the time signal of the
AR signal, the noisy AR signal and the enhanced signal.
For this example, the SNR of the noisy speech signal is 0
dB.

The approach was also tested using a speech signal and
additive noise. The speech signals are sentences from the
TIMIT database. Table 2 offers a comparison with oth-
ers approaches, by showing averaged SNR gain based on
10 speech signals and 10 noise simulations for each speech
signal.

Output SNR
Input SNR [13] [7] [8] proposed

(dB) (dB) (dB) (dB) (dB)

-5.00 2.46 -2.52 2.48 2.56
0.00 4.57 2.61 4.72 4.88
5.00 7.96 6.83 8.29 8.37

10.00 11.92 10.95 12.31 12.48
15.00 16.00 15.08 16.47 16.76

Table 2: Output SNR for an Input Speech Signal

plus White Noise

Figure 2 represents, respectively, the time signal of the
noise-free speech, the noisy speech and the enhanced speech.
For this example, the SNR of the noisy speech signal is 0
dB.

Compared to the methods similar in structure previ-
ously proposed by the author in [7] and in [8] and to the
Gibson’s algorithm [13], the proposed method provides in-
creases in SNR, as well as improved speech quality and in-
telligibility for input SNR between -5 and 15 dB. Gibson’s
algorithm needs two or three iterations to get the highest
SNR gain. It uses a voice activity detector to determine
silence periods. The above factors lead to computational
requirements higher than those corresponding to the pro-
posed approach.
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Figure 1: Example of AR signal enhancement (Input SNR
= 0 dB)
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