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ABSTRACT

Adaptive beamforming techniques are inefficient for eliminat-
ing transient noise components that randomly arrive from unpre-
dictable directions. In this paper, we present a real-timetransfer
function generalized sidelobe canceller(TF-GSC) for such non-
stationary noise environments. Hypothesis testing in the spectral
domain indicates either absence of transients, presence of an in-
terfering transient, or presence of desired source components. The
noise canceller branch of the TF-GSC is updated only during ab-
sence of transients, while the identification of the acoustical trans-
fer function is carried out only when desired source components
are present. Following the beamforming and the hypothesis test-
ing, estimates for the signal presence probability, the noise power
spectral density, and the desired speech log-spectral amplitude are
derived. Experimental results demonstrate the usefulness of the
proposed approach under nonstationary noise conditions.

1. INTRODUCTION

Adaptive beamforming techniques are inefficient for eliminating
diffuse noise and nonstationary noise components that randomly
arrive from unpredictable directions. Conventional postfiltering
methods are useful for the former type of noise, but not for the lat-
ter. The time variation of the interfering signals is usually assumed
to be sufficiently slow, such that the postfilter can track and adapt
to the changes in the noise statistics. Unfortunately, transient in-
terferences are often much too brief and abrupt for real-time track-
ing. In [1], a multichannel postfilter is combined with thetransfer
function generalized sidelobe canceller(TF-GSC) [2], and its per-
formance is compared with that of a single-channel postfilter. The
use of both the beamformer primary output and the reference noise
signals (resulting from the blocking branch of the TF-GSC) for dis-
tinguishing between speech transients and noise transients, enables
the algorithm to work in nonstationary noise environments, and al-
lows handling of abrupt noise spectral variations. However, in for-
mer contributions the beamformer stage feeds the postfilter, but the
adverse is not true. Taking into account the strong correlation of
speech presence in the time-frequency domain, hypothesis testing
made by the postfilter for distinguishing between speech, station-
ary noise and transient noise, can be used in the beamformer to
enable real-time applications. This will also enable on-line track-
ing of time-varyingacoustical transfer functions(ATFs) in case of
moving sources.

In this paper, we present a real-time TF-GSC, which includes
hypothesis testing as a feedback process to the adaptive beam-
former. The beamformer is based on the TF-GSC, but the re-
quirement for the stationarity of the noise is relaxed. The noise

canceller branch of the TF-GSC is updated only during absence of
transients, and the ATF identification is carried out only when de-
sired source components are present. Following the beamforming
and the hypothesis testing, estimates for the signal presence prob-
ability, the noise power spectral density, and the desired speech
log-spectral amplitude are derived. Experimental evaluation of the
proposed system, with comparison to an off-line system, demon-
strates the performance in nonstationary noise environments.

2. TRANSFER FUNCTION GENERALIZED SIDELOBE
CANCELLING

Letx(t) denote a desired speech source signal that, subject to some
acoustic propagation, is received byM microphones along with
additive uncorrelated interfering signals. The interference at the
ith sensor comprises a pseudo-stationary noise signal,dis(t), and a
transient noise component,dit(t). The observed signals are given
by

zi(t) = ai(t) ∗ x(t) + dis(t) + dit(t), i = 1, . . . , M (1)

whereai(t) is the acoustical transfer function from the desired
source to theith sensor, and∗ denotes convolution. Using
the short-time Fourier transform (STFT), we have in the time-
frequency domain

Z(k, `) = A(k, `)X(k, `) + Ds(k, `) + Dt(k, `) (2)

where k represents the frequency bin index,` the frame in-
dex, andZ(k, `), A(k, `), Ds(k, `) and Dt(k, `) are the cor-
responding M-dimensional vectors. The observed noisy sig-
nals are processed by the system shown in Fig. 1. The beam-
former comprises three parts: 1) a transfer-function beam-

former W(k, `)
4
= Ã(k,`)

‖Ã(k,`)‖2 , where Ã(k, `)
4
= A(k,`)

A1(k,`)
de-

notes ATF ratios, which aligns the desired signal components;
2) a blocking matrixB(k, `), which blocks the desired com-
ponents thus yielding the reference noise signalsU(k, `) =
BH(k, `) [Ds(k, `) + Dt(k, `)]; 3) a multichannel adaptive noise
cancellerH(k, `) = [H2(k, `), . . . , HM (k, `)]T , which elimi-
nates the stationary noise that leaks through the sidelobes of the
fixed beamformer.

Let three hypothesesH0s, H0t andH1 indicate respectively
absence of transients, presence of an interfering transient, and
presence of a desired source transient at the beamformer output.
The optimal solution for the noise cancelling filterH(`) (for no-
tational simplicity, we omit the argumentk throughout the rest of
the paper) is obtained by minimizing the power of the beamformer
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Fig. 1. Block diagram of the transfer function generalized sidelobe
canceller (TF-GSC).

output during the stationary noise frames:

min
H

n
[W(`)−B(`)H(`)]H ΦZZ(`) [W(`)−B(`)H(`)]

o���
H0s

(3)
whereΦZZ(`) = E

�
Z(`)ZH(`)

	
denotes the PSD matrix of the

observed signals. Using the normalized LMS algorithm [3] we
have

H(` + 1) =

�
H(`) + µh

Pest(`)
U(`)Y ∗(`) , if H0s is true,

H(`) , otherwise,
(4)

whereµh is a step factor that regulates the convergence rate, and
Pest(`) is a proper normalization factor.

The ATF identification is carried out based on time-frequency
bins that contain desired source components. LetL represent a set

of past frames whereH1 is true, and let
n
�̂ZZ1

(`) | ` ∈ L
o

denote

a corresponding set of past PSD estimates. Then, by exploiting the
nonstationarity of the desired signal [4, 2], an estimate for the ATF
ratios is recursively updated by

Ã(`) =

D
φ̂Z1Z1(`)�̂ZZ1

(`)
E
−
D
φ̂Z1Z1(`)

ED
�̂ZZ1

(`)
ED

φ̂2
Z1Z1

(`)
E
−
D
φ̂Z1Z1(`)

E2 (5)

where the average operation〈·〉 is defined by

〈f(`)〉 4= 1

|L|
X̀
∈L

f(`) .

Note that in former work, the entire observation interval is used for
the ATF identification, and̃A is estimated only once. HerẽA is
updated on every frame based on pastH1 frames, which facilitates
real-time applications. Note also the tradeoff associated with the
time interval used for the ATF identification. The time interval is
defined by the frames inL. On the one hand, it should be short
for the ATF time-invariance assumption to hold, and therefore the
maximal number of frames inL should be small. On the other
hand, the number of frames inL should be large for stabilizing the
solution. In frequency bins with low speech content, the interval
required for obtaining an estimate for̃A(`) might be very long,
since only frames for whichH1 is true are considered. In practice,
the time interval is chosen such that the estimation error due to
variations inÃ(`) is comparable to the estimation error caused by
restricting the size ofL.

3. HYPOTHESIS TESTING AND MULTICHANNEL
POSTFILTERING

Generally, three different components are involved in the TF-GSC
output: a non-stationary desired source component, a pseudo-
stationary noise component, and a transient interference. Our ob-
jective is to determine which category a given time-frequency bin
belongs to, based on the beamformer outputY (`) and the refer-
ence signals{Ui(`) | 2 ≤ i ≤ M}. Clearly, if transients have not
been detected at the beamformer output and the reference signals,
we can accept theH0s hypothesis. In case a transient is detected
at the beamformer output, but not at the reference signals, the tran-
sient is likely a source component and therefore we determine that
H1 is true. On the contrary, a transient that is detected at one of
the reference signals but not at the beamformer output is likely an
interfering component, which implies thatH0t is true. In case a
transient is simultaneously detected at the beamformer output and
at one of the reference signals, a further test is required, which in-
volves the ratio between the transient power at beamformer output
and the transient power at the reference signals.

Let S be a smoothing operator in the power spectral domain,
and letM denote an estimator for the PSD of the background
pseudo-stationary noise, derived using theMinima Controlled Re-
cursive Averagingapproach [5]. The decision rules for detecting
transients at the TF-GSC output and reference signals are

ΛY (`)
4
= SY (`)/MY (`) > Λ0 (6)

ΛU(`)
4
= max

2≤i≤M

� SUi(`)

MUi(`)

�
> Λ1 , (7)

respectively, whereΛY andΛU denote measures of the local non-
stationarities (LNS), andΛ0 andΛ1 are the corresponding thresh-
old values for detecting transients [6]. Thetransient beam-to-
reference ratio(TBRR) is defined by the ratio between the tran-
sient power of the beamformer output and the transient power of
the strongest reference signal:

Ω(`) =
SY (`)−MY (`)

max
2≤i≤M

{SUi(`)−MUi(`)} . (8)

Transient signal components are relatively strong at the beam-
former output, whereas transient noise components are relatively
strong at one of the reference signals. Hence, we expectΩ(`) to
be large for signal transients, and small for noise transients. As-
suming there exist thresholdsΩhigh andΩlow such that

Ω(`)|H0t
≤ Ωlow ≤ Ωhigh ≤ Ω(`)|H1

(9)

the decision rule for differentiating desired signal components
from the transient interference components is

H0t : γs(`) ≤ 1 or Ω(`) ≤ Ωlow

H1 : γs(`) ≥ γ0 andΩ(`) ≥ Ωhigh

Hr : otherwise (10)

where

γs(`)
4
=
|Y (`)|2
MY (`)

(11)

represents thea posteriori SNR at the beamformer output with
respect to the pseudo-stationary noise,γ0 denotes a constant sat-
isfying P (γs(`) ≥ γ0 | H0s) < ε for a certain significance level
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Fig. 2. Block diagram of the multichannel postfiltering.

ε, andHr designates arejectoption where the conditional error of
making a decision betweenH0t andH1 is high.

Following the beamforming and the hypothesis testing, a mul-
tichannel postfiltering is applied as depicted in Fig. 2. Thea priori
signal absence probabilitŷq(`) is set to1 if signal absence hy-
potheses (H0s orH0t) are accepted, and is set to0 if signal pres-
ence hypothesis (H1) is accepted. In case of the reject hypothesis
Hr, a soft signal detection is accomplished by lettingq̂(`) be in-
versely proportional toΩ(`) andγs(`):

q̂(`) = max

�
γ0 − γs(`)

γ0 − 1
,
Ωhigh − Ω(`)

Ωhigh − Ωlow

�
. (12)

Based on a Gaussian statistical model [7], the signal presence
probability is given by

p(`) =

�
1 +

q(`)

1− q(`)
(1 + ξ(`)) exp(−υ(`))

�−1

(13)

whereξ(`)
4
= λx(`)/λd(`) is thea priori SNR,λd(`) is the noise

PSD at the beamformer output,υ(`)
4
= γ(`) ξ(`)/(1 + ξ(`)), and

γ(`)
4
= |Y (`)|2 /λd(`) is thea posterioriSNR.

An estimate for noise PSD̂λd(`) is obtained by recursively av-
eraging past spectral power values of the noisy measurement, us-
ing a time-varying frequency-dependent smoothing parameter [5].
Subsequently, spectral enhancement of the beamformer output is
achieved by applying theOptimally-Modified Log-Spectral Ampli-
tude (OM-LSA) gain function [5], which minimizes the mean-
square error of the log-spectral amplitude under signal presence
uncertainty.

4. EXPERIMENTAL RESULTS

In this section, the performance of the proposed real-time system
is evaluated under non-stationary noise conditions, and compared
to an off-line system consisting of a TF-GSC and a single-channel
postfilter. The evaluation includes objective quality measures, a
subjective study of speech spectrograms and informal listening
tests.

A linear array, consisting of four microphones with5 cm spac-
ing, is mounted in a car on the visor. Clean speech signals are
recorded at a sampling rate of8 kHz in the absence of background
noise (standing car, silent environment). An interfering speaker
and car noise signals are recorded while the car speed is about60
km/h, and the window next to the driver is slightly open (about5
cm; the other windows are closed). The input microphone signals
are generated by mixing the speech and noise signals at various

SNR levels in the range[−5, 10] dB. Off-line TF-GSC beamform-
ing is applied to the noisy multichannel signals, and its output is
enhanced using the OM-LSA estimator. The result is referred to
as single-channel postfiltering output. Alternatively, the proposed
real-time integrated TF-GSC and multichannel postfiltering is ap-
plied to the noisy signals. Its output is referred to as multichannel
postfiltering output.

Figure 3 shows experimental results obtained for various noise
levels. The two quality measures,segmental SNR(SegSNR) and
log spectral distance(LSD) [8], are evaluated at the first micro-
phone, the off-line TF-GSC output, and the postfiltering outputs.
A theoretical limit postfiltering, achievable by calculating the noise
PSD from the noise itself, is also considered. It can be readily seen
that TF-GSC alone does not provide sufficient noise reduction in
a car environment, owing to its limited ability to reduce diffuse
noise [2]. Furthermore, multichannel postfiltering is considerably
better than single-channel postfiltering.

A subjective comparison between multichannel and single-
channel postfiltering was conducted using speech spectrograms
and validated by informal listening tests. Typical examples of
speech spectrograms are presented in Fig. 4. The noise PSD at the
beamformer output varies substantially due to the residual inter-
fering components of speech, wind blows, and passing cars. The
TF-GSC output is characterized by a high level of noise. Single-
channel postfiltering suppresses pseudo-stationary noise compo-
nents, but is inefficient at attenuating the transient noise compo-
nents. By contrast, the proposed system achieves superior noise
attenuation, while preserving the desired source components. This
is verified by subjective informal listening tests.

5. CONCLUSION

We have described a real-time beamformer that is particularly ad-
vantageous in non-stationary noise environments. The TF-GSC
primary output and the reference noise signals are exploited for
deciding between speech, stationary noise and transient noise hy-
potheses. The decisions are used for deriving estimators for the
signal presence probability and for the noise PSD. The signal pres-
ence probability modifies the spectral gain function for estimating
the clean signal spectral amplitude. It is worth mentioning that
the postfilter is designed for suppressing the stationary noise, as
well as transient noise components that do not overlap with desired
signal components in the time-frequency domain. The overlap-
ping part between desired and undesired transients is less attenu-
ated by the postfilter, to reduce signal distortion, particularly since
such noise components are perceptually masked by the desired
speech [9]. We note that the computational complexity and prac-
tical simplifications of the proposed system were not addresses.
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Fig. 4. Speech spectrograms. (a) Original clean speech signal at microphone #1: “Five six seven eight nine.”; (b) Noisy signal at microphone
#1 (SNR= −0.9 dB, SegSNR= −6.2 dB, LSD = 15.4 dB); (c) TF-GSC output (SegSNR= −5.3 dB, LSD = 12.2 dB); (d) Single-
channel postfiltering output (SegSNR= −3.8 dB, LSD= 7.4 dB); (e) Multichannel postfiltering output (SegSNR= −1.3 dB, LSD= 4.6
dB); (f) Theoretical limit (SegSNR= −0.4 dB, LSD= 4.0 dB).

Here, the main contribution is the incorporation of the hypothe-
sis test results into the beamformer stage. The hypotheses control
the noise canceller branch of the beamformer, as well as the ATF
identification, thus enabling real-time tracking of moving talkers.
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