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ABSTRACT

A novel approach for speech dereverberation via sub-band
implementation of subspace methods is presented1. In recent
work we presented a method utilizing the null subspace of
the spatial-temporal correlation matrix of the received sig-
nals (obtained by the generalized eigenvalue decomposition
(GEVD) procedure). The desired acoustic transfer func-
tions (ATF-s) are shown to be embedded in these generalized
eigenvectors. The special Silvester structure of the filtering
matrix, related to this subspace, was exploited for deriving
a total least squares (TLS) estimate for the ATF-s. The high
sensitivity of the GEVD procedure to noise, especially when
the involved ATF-s are very long, together with the wide dy-
namic range of the speech signal, make the proposed method
problematic in realistic scenarios. In this contribution we
suggest to incorporate the TLS subspace method into a sub-
band structure. The novel method proves to be efficient,
although some new problems arise and other remain open.
A preliminary experimental study supports the potential of
the proposed method.

1 INTRODUCTION AND PROBLEM FORMU-
LATION

The dereverberation problem, although explored for a long
period, still remains an unsolved issue. The null subspace of
the correlation matrix of the received signal was shown by
Gürelli and Nikias [1] to maintain information on the transfer
function relating the source and the receivers. This obser-
vation constitute the basis for their EVAM algorithm. This
method, although originally aimed at solving communica-
tions problems, has also a potential in the speech processing
framework. The same observation was recently exploited by
the authors [2],[3] as the basis of a TLS based approach. We
proceed now by formally introducing the problem.

Assume a speech signal is received by M microphones in
a noisy and reverberated environment. The microphones re-
ceive a speech signal which is subject to propagation through
a set of ATF-s and contaminated by additive noise. The M

1This research work was carried out at the ESAT laboratory
of the Katholieke Universiteit Leuven, in the frame of the In-
teruniversity Attraction Pole IUAP P4-02, Modeling, Identifica-
tion, Simulation and Control of Complex Systems, the Concerted
Research Action Mathematical Engineering Techniques for Infor-
mation and Communication Systems (GOA-MEFISTO-666) of
the Flemish Government and the IT-poject Multi-microphone Sig-
nal Enhancement Techniques for handsfree telephony and voice
controlled systems (MUSETTE-2) of the I.W.T., and was par-
tially sponsored by Philips-ITCL.

received signals are given by,

zm(t) = ym(t) + vm(t) =

naX
k=0

am(k)s(t− k) + vm(t) (1)

where m = 1, . . . , M and t = 0, 1, . . . , T . zm(t) is the m-
th received signal, ym(t) is the corresponding desired signal
part, vm(t) is the noise signal received at the m−th micro-
phone, s(t) is the desired speech signal and T +1 is the num-
ber of samples observed. Define the Z−transform of each of
the M filters as,

Am(z) =

naX
k=0

am(k)z−k; m = 1, 2, . . . , M .

The goal of the dereverberation problem is to reconstruct the
speech signal s(t) from the noisy observations zm(t), m =
1, 2, . . . , M . In both full-band and sub-band approaches we
try to achieve this goal by first estimating the ATF-s, and
then, based on these estimates, to reconstruct the desired sig-
nal. Schematically, an ATF Estimation procedure, depicted
in Fig. 1 is searched for.
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Figure 1: ATF-s estimation procedure.

The structure of the rest of this paper is as follows. In
Section 2.1 we start by exploring the full-band algorithm.
The drawbacks of this algorithm are stated in Section 2.2.
The new sub-band method is presented in Section 3. A pre-
liminary experimental study is given in Section 4. The open
issues related with the proposed method and some future
research directions are discussed in Section 5.

2 FULL-BAND ALGORITHM

In this section we briefly overview the full-band approach [2]
and state its drawbacks.
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2.1 Review

The essence of the use of the null subspace lies in Eq. (2).

[am(t) ∗ yn(t)− an(t) ∗ ym(t)] ∗ el(t) = 0; m, n = 1, . . . , M
(2)

(∗ denotes the convolution operation), where it can be seen
that the desired ATF-s are embedded in the null subspace
of the reverberated (but not noisy) signals. To exploit this
observation, the data matrices of ym(t); m = 1, . . . , M are
constructed. The data matrix of the m-th signal is given
by Eq. (3), on the top of the next page. n̂a is the estimated
ATF-s order, assumed to be larger than the real order na, i.e.,
the ATF-s order is always overestimated. The data matrix
of all the received signals may then be constructed. In the
two channel case the entire data matrix is given by,

YT =
�YT

2 −YT
1

�
otherwise a proper pairing of the channels may be applied [2].
The 2(n̂a +1)×2(n̂a +1) spatial-temporal correlation matrix

of the data is given by R̂y = YYT

T+1
. The null subspace of the

matrix R̂y is the basis of the proposed algorithm, as we show
in the sequel. As, usually, only noisy observations are avail-
able, it can be shown that the GEVD of the corresponding
correlation matrices, R̂z and R̂v, can be applied instead. The
generalized eigenvectors related to the generalized eigenval-
ues of value 1 are then used. Denote these generalized eigen-
vectors by gl, l = 0, 1, 2, . . . , n̂a − na. Then, splitting each
null subspace vector into M parts of equal length n̂a + 1 we
obtain,

G =
�
g0 g1 · · · gn̂a−na

�
=

264 ã1,0 ã1,1 · · · ã1,n̂a−na

...
ãM,0 ãM,1 · · · ãM,n̂a−na

375 .

From the above discussion, each of the vectors ãm,l of order
n̂a have the following transfer function,

Ãml(z) =

n̂aX
k=0

ãml(k)z−k = Am(z)El(z)

l = 0, 1, . . . , n̂a − na, m = 1, . . . , M. (4)

Concatenation of these filters nullifies the noiseless data ma-
trix. Thus, the zeros of the filters Ãml(z) comprise the roots
of the desired filters as well as some extraneous zeros. The
common zeros of Ãml(z); m = 1, . . . , M constitutes the fil-
ters El(z). Gürelli and Nikias proposed [1] a method for
eliminating these common zeros.

We proceed from Eq. (4) in a different manner. In matrix
form, Eq. (4) may be written in the following manner. Define
the (n̂a + 1)× (n̂a − na + 1) Silvester filtering matrix (recall
n̂a ≥ na is assumed),

Am =

266666666666666664

am(0) 0 0 · · · 0
am(1) am(0) 0 · · · 0

... am(1)
. . .

...

am(na)
...

. . .
. . . 0

0 am(na)
. . . am(0)

... 0 am(1)
...

. . .
...

0 0 · · · 0 am(na)

377777777777777775| {z }
n̂a−na+1

. (5)

Then,
ãml = Amel, (6)

where, eT
l =

�
el(0) el(1) . . . el(n̂a − na)

�
are vectors of the

coefficients of the arbitrary unknown filters El(z). Thus, the
number of different filters (as shown in Eq. (4)) is n̂a−na +1
and their order is n̂a − na. Let E =

�
e0 e1 · · · en̂a−na

�
be

an (n̂a − na + 1)× (n̂a − na + 1) unknown matrix, then

G =

264 A1

...
AM

375 E 4
= AE . (7)

Note, that in the special case where the order of the ATF-s
is known, i.e. n̂a = na, there is only one vector in the null
subspace and its partitions ãm0 ; m = 1, . . . , M are equal
to the desired filters am up to a (common) scaling factor
ambiguity. In the case where n̂a > na, the actual ATF-s
Am(z) are embedded in Ãml(z) ; l = 0, 1, . . . , n̂a − na. The
case n̂a < na could not be treated properly by the proposed
method. Based on the special structure of Eq. (7) and in
particular on the Silvester structure of Am, we derive now
an algorithm for extracting the ATF-s Am(z). E in Eq. (7)
is a square and arbitrary matrix, implying that its inverse
usually exists. Denote this inverse by E i = inv(E). Then.

GEi = A (8)

Denote the columns of Ei by E i =
�
ei
0 ei

1 · · · ei
n̂a−na

�
. Then,

Eq. (8) can be rewritten as,

G̃x = 0. (9)

Where, G̃ is defined as,

G̃ =

266666666664

G O · · · · · · · · · O −I(0)

O G O · · · · · · O −I(1)

... O . . .
...

...
...

...
. . .

. . .
...

...
...

...
. . .

. . . O
...

O O · · · · · · O G −In̂a−na

377777777775
(10)

The vector of unknowns is defined by,

xT =
h
ei
0

T
ei
1

T · · · ei
n̂a−na

T a1
T a2

T . . . aM
T .
i

0 and O are vector and matrix, respectively, of zeros of
proper dimensions. I(l) ; l = 0, 1, . . . , n̂a − na is a fixed
shift-by-l matrix.

Note however, that in most cases equality in Eq. (9) only
approximately holds. Therefore, we suggest to use the total
least squares (TLS) algorithm by picking the eigenvector x
which corresponds to the smallest eigenvalue of the matrix
G̃.

2.2 Drawbacks

The proposed full-band method although theoretically sup-
ported have several severe drawbacks in real-life scenarios.

First, actual ATFs in real room environments may be very
long (1000–2000 taps are common in medium–sized room).
In such case, the GEVD procedure is not robust enough
and quite sensitive to small estimation errors in the corre-
lation matrix. Furthermore, the matrices involved become
extremely large causing huge memory and computational re-
quirements. Another problem arise from the wide dynamic
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Ym =

2666666664
ym(0) ym(1) · · · ym(n̂a) ym(n̂a + 1) · · · ym(T ) 0 · · · 0

0 ym(0) ym(1) · · ·
...

... · · · ym(T ) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .

0 · · · 0 ym(0) ym(1) · · · ym(n̂a) · · · ym(T )

3777777775 (3)

range of the speech signal. This phenomenon may result
in an erroneous estimates of the frequency response of the
ATF-s in the low energy bands of the input signal.

Altogether these drawbacks render the proposed method
useless in most practical speech dereverberation applications.

3 SUB-BAND APPROACH

To tackle the problems which arise in the full-band approach,
sub-band implementation of the TLS subspace method is
proposed. The use of sub-bands for splitting adaptive filters,
especially in the context of echo cancellation, has gained re-
cent interest in the literature. However, the use of sub-bands
in subspace methods is not as common.

The M microphone signals are filtered by a sub-band
structure, yielding a total of LM signals, zl

m(t); l =
0, . . . , L − 1; m = 1, . . . , M . The signals are depicted in
Fig. 2. The full-band subspace methods presented above is
now applied to each sub-band signal separately. Although
the resulting sub-band signals effectively correspond to a
longer filter (which is the convolution of the corresponding
ATF and the sub-band filter), the algorithm is aimed at re-
constructing the ATF alone, ignoring the filter-bank roots.
This is due to the fact that the zeros of the sub-band filter are
common to all channels zl

m(t); m = 1, . . . , M, with l fixed,
and that subspace method is blind to common zeros (see
(4)). For properly exploiting the benefits of the sub-band
structure, each sub-band signal should be decimated. We
choose critically decimated filter-bank, i.e. the decimation
factor equals the number of bands.

This procedure has a twofold advantage. First, the ATF
order in each band is approximately reduced by the decima-
tion factor, making the estimation task easier. Second, after
filtering and decimating the signals at each sub-band become
flatter, making the signals effectively whiter, resulting again
an improved performance. After estimating the decimated
ATF-s, they are combined together using a proper synthesis
filter-bank, comprised of interpolation followed by a filter-
bank similar to the analysis filter-bank.

The design of the filter-bank is of crucial importance. Spe-
cial emphasis should be given to adjusting the sub-band
structure to the problem at hand. In this contribution
we only aim at demonstrating the ability of the method,
thus only a simple 8-channel sub-band structure, depicted in
Fig. 3, is used. Each of the channel filters is an FIR filter of
order 150. The filters are equi–spaced along the frequency
axis and are of equal bandwidth. These filters constitute the
analysis and synthesis filter-banks Hl, Gl; l = 0, 1, . . . , L−1.

Gain ambiguity may be a major drawback of the sub-band
method. Recall that the TLS-subspace method is estimat-
ing the ATF-s up to a common gain factor. In the full-band
scheme this does not impose any problem, since it results in
an overall scaling of the output. However, in the sub-band
scheme, the gain factor is common for all sub-band signals
but is generally different from band to band. Thus, the es-
timated ATF-s (and the reconstructed signal) is effectively
filtered by an arbitrary filter, which can be regarded as a
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Figure 3: Sub-band structure. 8 equi–spaced equi–
bandwidth filters.

new reverberation term. Although several methods can be
applied to overcome this gain ambiguity problem, in this
contribution we assume that the gain in each sub-band is
known. Thus only the ability of the method to estimate the
frequency shaping in each band is demonstrated. The gain
ambiguity problem is left for further research.

4 EXPERIMENTAL STUDY

A preliminary experimental study is conducted to test the
potential of the proposed method. Filters with exponentially
decaying envelope and of order na = 32 are used to simu-
late the ATF-s. Speech-like noise presented input signal with
wide dynamic range. The 8 channel sub-band structure de-
picted in Fig. 3 is used. Decimation in each channel by a
factor of 8 (critically decimated) allow for a significant order
reduction. In particular, the approximate order of the filter
in each band is 32

8
= 4. While applying the TLS estimation

algorithm, this order is overestimated only by 2. In Fig. 4
(Left) the estimated response in each sub-band is depicted,
together with the sub-band structure used. The response
is given for each band separately. In Fig. 4 (Right) all the
bands are combined to form the entire frequency response
of the ATF-s. The results demonstrate the ability of the al-
gorithm to work well at lower SNR levels (25dB) while the
filter order is still relatively high, even for the speech-like
signal. This is in contrast to the full-band method which
collapses even in a lower order. It is worth noting that er-
rors in the frequency response are mainly encountered in the
transition regions between the frequency bands. This phe-
nomenon should be explored in depth, to enable a filter-bank
design, which is more suited to the problem at hand.

5 DISCUSSION

The incorporation of the sub-band structure partially solves
the problems encountered in the full-band algorithm. Longer
ATF-s may now be dealt with, since in each sub-band only
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Â
0
1(z)

Â
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Figure 2: Null subspace in the two microphone noiseless case.
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Figure 4: Sub-band method: estimated frequency response
(frequency axis in Hz) of an ATF. Order 32, speech-like in-
put, SNR=25dB. Separate bands (Left). Combined bands
(Right).

shorter ATF-s are estimated. Besides, as the sub-bands be-
come narrower, the input signal turns flatter, enabling the
algorithm to deal with signals with wide dynamic range, like
the speech signal.

Nevertheless, Several issues remain open. First, the gain
ambiguity problem is not solved. Overlapping between
bands or non-equal bands, might be ways to mitigate this
problem. Another way might be to use the original input
signals gain. Second, the estimation in the transition be-
tween bands is poor. Oversampled bands should be tested
as a way to overcome this problem. Third, the SNR tested
is still too high and the ATF-s are still very short to rep-
resent realistic scenarios. Finally, the proposed structure is
not computationally efficient enough. The use of the short
time Fourier transform (STFT) as a filter-bank is under cur-
rent investigation. However, the potential of the sub-band
method encourages further research on the structure.
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