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ABSTRACT Noise ReductiofNR) is the first stage of enhancement which de-
livers a signabWith a reduced background noise level to the speech

In wireless speech communication systems several meaatges h . :
encoder. Noise reduction requires

taken to provide the required audio quality at the receiBesides
speech and channel coding, algorithms for speech enhantenee e the knowledge of the noisy signglk) and

applied to cope with the impairments resulting from acauséick- o statistical a priori knowledge about speech and noise.
ground noise, telephone frequency characteristics, aidua bit
errors. In the literature, advanced techniques for noipprassion,

artificial bandwidth extension, and error concealment i@&téd as represented by vectossof bits x. The transmission over the noisy
: discipli ¢ . hoi inq. :
independent (sub-)disciplines of adaptive speech sigoakssing channel is described by the so-called equivalent channéthwh

However, these three approaches of speech enhancememtware a.

ally based on the same mathematics of conditional Bayestana- |dnclud§s| T_ner chgr_lnel enhcodlnglg,dmO%l_Jlatlc:n, rC110|sy tmmfmn
tion. In this contribution, a common view and recent develepts emodulation, and Inner channel decoding. In adverserason

in these three areas are presented conditions, residual bit errors may remain after channebding.
' Therefore, error concealment is required to reduce theltimgu
subjectively annoying effects.

The samples are transformed frame by frame into parameters
v by the model based speech encoder. The parametene

1. INTRODUCTION

In digital cellular radio systems the speech quality ssffierainly Error Concealment(EC), the second stage of enhancement, is
from the following sources of degradation: based on
e acoustical background noise e the decoded and possibly disturbed Bits ~
o bandpass limitation of the speech signal to the e Dit-reliability information and
telephone frequency band:30..3.4 kHz e a priori knowledge about parameters
e quantization noise due to source encoding The channel decoder delivers for grogpsef bits or even for indi-

vidual bitsxa reliability measure, the Decoder Reliability Indicator
(DRI). The error concealment stage delivers estimatedhpatersy”
We assume that a state of the art speech encoder such as the G&fdich are applied to the model based speech decoder.
Enhanced Full Rate Codec (GSM-EFR) is used. Thus the level of Finally the decoded signa i$ applied to the third stage of
the coding distortions is considered as acceptable low. tfilee  speech enhancement, which performs the artificial extansio
other degradations can be combated by three separate coeate of narrowband telephone quality .®@..3.4 kHz) to wideband
sures. which be subsumed here under the unifying sgreech en-  telephone quality (05...7.0 kHz). This step is of special interest
hancement as soon as network operators introduce true wideband speech
Fig. 1 shows a block diagram of the typical speech communicoding [1], [2] into the networks. For a long transition peti
cation system. A microphone captures the speech disturped marrowband and wideband speech terminals will coexistate of
acoustical background noise. The sampless+ n are obtained by ~ a sending narrowband terminal, the speech quality at treviag
using a telephone bandpass3(0.3.4 kHz) and an A/D-converter end can be improved by artificial bandwidth extension.
with a sampling frequency dfs = 8 kHz.

e residual bit errors after channel decoding.
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Figure 1: Speech communication system.



Bandwidth ExtensionfBWE), the third stage of enhancement b, a priori knowledge in terms of the statistics af (discrete

needs
e speech signd limited by telephone bandpass

e a priori knowledge about the spectral envelope of wideban

speech.

probabilitiesP(a) or probability density functions (PDFg)(a))
and even statistical knowledge about the disturbanceddagjon in
erms of transition probabilitieB(b|a) or conditional PDFg(b|a).
f some information aboua has been lost due to the disturbance,
the original value can not be reconstructed without errarsus,

All of the 3 speech enhancement blocks NR, EC, and BWE of Fig. khe estimation relies on finding the best possible estiraaite &

are based on the same statistical principle of conditiostaation
of signal parameters using some a priori knowledge eg. 43], [
This overview paper follows [3]. Section 2 gives an introioe
to conditional estimation. Section 3 addresses the teaknid sin-
gle microphone noise reduction. Here, the conditionalestion
is performed in the discrete Fourier domain. Section 4 idiga
with the issue of error concealment (EC) by soft decisiorrc®u

statistical sense, i.e., such that the average estimation should
be minimized. For this purpose the “a posteriori“ probapili
density functionp(ajb) of the original valuea conditioned on the
instantaneous observatibrs exploited.

A cost functionC(a,d) is introduced [5], which assigns a value to
each combination of undisturbedand estimated Signal and thus
weights the estimation error for each given§).

decoding which is performed in the domain of the speech codec

parameters, using a priori knowledge on parameter levelallyi

Section 5 discusses artificial bandwidth extension (BWE}@as

ditional estimation of the wideband spectral envelopegisiistate
model of speech.

2. CONDITIONAL ESTIMATION

The speech enhancement algorithms are based on condiistial
mation of speech parameters such as DFT-coefficients oicpoed
coefficients.

In Fig. 2 two different setups are illustrated.

disturbed

original disturbed

signal signal observation
Signal ) 7l
§ disturgbance ) Y Parameter b Parameter a
degradation analysis B estimation
a priori knowledge
Parameter | ¢
analysis A original
parameter a)
Parameter )
§ Parameter . b Parameter a
. disturbance/ L
analysis B . estimation
degradation
a priori knowledge
Parameter | ¢
analysis A

020403 b)

Figure 2: Conditional estimation in a parameter domain gigin
priori knowledge

a) signal disturbance

b) parameter disturbance

In both cases parametexsf the original signatare obtained as a
reference by afirst analysis procedure A. In practice, tharpaters

An estimation rulea= f(b), which minimizes the expectation of
the cost function, has to be dereived. The average costpect¢
tion of C(a,&) can be formulated by integration over the joint PDF
of the undisturbed and disturbed value

0

po—E{C(a,8)} = / /C(a,a)-p(a,b) dadb

—00 —00

@)

The estimation rula = f (b) can be found by minimizingg. After
applying Bayes’ theorem, equation (1) can be converted|sva

p(b) db. @)

As p(b) is non-negative the minimum @f can be found by mini-
mizing the inner integral for every possible observatidb].

\mf/c

2.1 Conditional Minimum Mean Square Error Estimation

p1=E{C(a, p(alb) da (3)

Choosing a square cost function, i@(a, ) = (a— &)2, minimiza-

tion of the inner integral of (2) w.r.a ~

00 <)

/(a—é)z-p(a\b) da| = — /Z(a—é)-p(a\b) dato (4)

—00

d
da
leads with f p(ab) da= 1 to the minimum mean square error

(MMSE) or condltlonal mean estimator:

00

a—E{alb} = /a-p(a|b) da

—o00

®)

The a posteriori probability densify(alb) is unknown, but by using
Bayes theorem once more, (5) can be rewritten as

aare not accessible, but instead of this we have disturbgided . bla) - d r bla) . d
observationd, which are gained by a second analysis procedure . _fma p(bla)- p(a) da _{oa p(bla)-p(a) da

B. The analysis algorithms A and B must not necessarily be the a= p(b) T T - (®
same. The difference between the two situations consistsein 7fw p(bla) - p(a) da

place, where the disturbance is introduced: either on treatlevel
(Fig. 2a) or on the parameter level (Fig. 2b).
The task of the conditional estimator is then to form an estéa

Both (5) and (6) can be derived as well for discrete probidslj
if a andb take discrete values (e.g. due to quantization). The inte-

for each individual parameterby using the disturbed observation grals have to be replaced by summations and the PDFs by tdiscre



probabilities. Even a mixed form is possible where the stia of
only one quantity is discrete. In this case we need the "mized”
of the Bayes’ theorem.

Equation (5) is the theoretical solution, whereas (6) ldad$ie
real implementation. Under certain constraints, whichfalfdled
in the noise reduction application, closed analytical sohs of (6)
can be derived (see Section 3).

2.2 Conditional Maximum a Posteriori Estimation
Another useful function to weight the estimation error 2y is the
0 ; la—4<e

uniform cost
C:{ 1 else )

To minimize the integral of (3) with this cost function the xiraum
of p(alb) must be in the area whe@= 0. Thus the estimata ~
is obtained as the maximum of the a posteriori probabilitysity
function.

a=argmaxp(alb), (8
which can also be reformulated via Bayes rule as
R p(bla) - p(a)
a=argmax————. 9

If the a posteriori probability density is symmetric andmodal the
MMSE estimate equals the maximum a posteriori (MAP) estmat
(see e.g. [6]).

3. NOISE REDUCTION (NR)

As a first application of conditional estimation, the cortoafsin-
gle microphone noise suppressiondpectral subtractioror more
generally byspectral weightingechniques is described. Recent de-
velopments exploiting improved a priori knowledge are preed.

A block diagram of a typical implementation is illustratedrig.
3. Due to the linearity of the DFT, the noisy spectral compaisie
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Figure 3: Single microphone noise reduction system.

can be described in the parameter domain by
Y(ml)=RmDe? ™ = sml)+Nml), (10

wheremis the frame index anbdenotes the frequency index.
The complex components of speech and noise

S SRe+ jSm
N Nre+ jNim,

with Sge = Re{S} andS,, = Im{S}, etc. can also be described by
their amplitudesA, R) and their phasesi( ) according to,

s(m,1) =A(m,1el*™) and N(m,1) = B(m,1)elP(™)

For simplicity, the frame indexn is omitted in Fig 3 and in the
following discussion.

The sub-block for SNR estimation calculates the frequerey d
pendent variances of the speech and noise DFT coefficierntgW
used methods for estimating the noise spectral variagcand the
speech variances§ are theMinimum Statisticsalgorithm [7] pro-
posed by Martin and and the decision directed approach peapo
by Ephraim and Malah [8].

Fig. 4 shows a the model of the noise reduction task in reldto
the conditional estimation problem of Fig. 2a. The signardda-
tion consists in the additive background naigk). In both analysis
blocks A and B of Fig. 2a the Discrete Fourier Transform (DIST)
used.

Disturbance

s(k) y(k) Y(l) is S
| Q DFT reducton |3
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a priori knowledge
S(1)
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Figure 4: Model of noise suppression by conditional estiomat
Correspondence with respect to Fig. 2a:

Sh=aY(l)=b ) =4

The (conditional) speech estimator is based on statisticalels
for speech and noise (a priori knowledge) and uses eith&MMMSE
or the MAP criterion. Under certain assumptions about th&$af
the speech and the noise components, the equations (6) &yl/o
can be solved analytically. In many cases the estirBdtecan be
obtained by applying real-valued spectral weight$), 0< G <1
to the noisy DFT coefficientg(l) according to

&) = G()-Y(I).

3.1 Statistical Signal Modelsfor Noise Reduction

(11)

The formulation of appropriate transition PDpgbja) = p(Y|S)
usually relies on the assumption, that real and imaginary qfa
the noise DFT coefficien(l) are zero mean independent Gaus-
sian [8] with equal variance, which may be justified by thetran
limit theorem. For many relevant acoustic noises this agsiom
approximates the real distribution very well. Thus, thengition
PDFsp(bja) = p(YrelSre) can be written for each frequency index
| separately for the real (and imaginary) part. On the othedha
the transition PDRp(bja) = p(Y|S) of the complex noisy DFT co-
efficientY conditioned on the speech amplitudeand the phase
a can then be written as joint Gaussian and the PDF of the noisy
amplitudeR given the speech amplitudeas Rician.

The statistical model of the real and imaginary parts of tifd D
coefficientsS(l) of speech have been considered traditionally to be
Gaussian distributed and consequently, the spectral ardph was
assumed to be Rayleigh distributed.

Instead of a Gaussian model, Martin [9],[10] has proposed so
called super-Gaussian models, such as a Laplace or Gammne mod
for statistical independent real and imaginary parts ofgpeech
coefficients.

An even more flexible super-Gaussian model which includes th
Gaussian and the Gamma model as special cases has beeregdropos
in [11],[12] as a parametric approximation.



3.2 Conditional Estimation for Noise Reduction can be found by partial derivation with respectA@and a ([12]),

Based on the given statistical modgi&), conditional MMSE or leading to

MAP speech estimators (saeaccording to (5) and (9)) can be de- 1

rived. Emphasis will be laid here on recent improvementseom G(l) = u+,/u2 + L, with , u= = — #, (16)
ing the exploitation of super-Gaussian a priori knowledgenading V 2y(1) 2 4y(h)-&n

to [11],[22]. The conditional estimators can generally lesigned

for either complex parameters, i.e., e and S, or for the real  wherev and i are constants anfl andy are the a priori and the a
valued spectral amplitudes, i.e., far posteriori SNRs

MMSE estimation (5) can be performed according to

. -0y - BU
R o J SRe* P(Yre|SRe) - P(SRe) dSRe Oﬁ(l) , Oﬁ(l)
= : Yre) ARe= — :
e ZSRG P(SRelYre) dSRe j‘f’ P(YrelSke) - P(Ske) SR In informal subjective listening tests the super-Gaussimaels
- o ere © © are clearly preferred by the test persons.
12)
Assuming a Gaussian distributions both of speech and noise c 4. ERROR CONCEALMENT (EC)
ponents, i.e., equation (12) can be solved explicitly anddeto the
so-called Wiener filter [13] Digital speech, audio, and video communication over nolsne
nels is usually based on source and channel coding. Theesenrc
A aé(l) coder delivers source parameters such as, e.g., A-law cuizth
S = G()-Y(l) = Ué(l) + Uﬁ(') Y. (13) samples, or filter coefficients of the digital vocal tract rabdThe

achievable speech, audio, or video quality is determinedhly
Improved MMSE estimators have been developed with Laplacénodel, the quantizers and the resulting net bit rate of theceo
or Gamma modeling of the real and imaginary parts of the $peeccoding algorithm. For error protection channel coding ipleul to
DFT coefficients [9], [10]. the corresponding bit patterns of these parameters, temweshe
From a perceptual point of view, it is more desirable to estam quality level over a wide range of channel characteristidsver-
the speech spectral amplitude than the complex spectrurtodne  theless, even with channel coding residual bit errors ootoase
perceptual unimportance of the phase. The probably bestrkab ~ of (temporarily) adverse channel conditions that may |ead se-
gorithm of Ephraim-Malah [8] is an MMSE estimator fortheeple ~ vere degradation of the signal quality. These annoyingtffean
spectral amplitudé, i.e., be reduced or even be eliminated &ayor concealmente.g., [16],
[17]).
}OA- p(Y|A)- p(A) dA _For_error concealm_ent, the concept_of conditic_JnaI paramgxe _
_0 (14) timation can be appln_ad at thg receiving end without any firodi
cations of the transmitter. It is assumed that a parametticce
encoder delivers quantized parameter€Each parameter value is
transmitted over the noisy channel as a bit pattern (bitorggt At
The integration results for model distributions for speemid the receiving end a SISO channel decoder (Soft Input - Soft Ou
noise in spectral amplitude estimation rules according ltb).(  put) is assumed, which produces soft information. Thisrimition
Later [14], the same authors introduced a minimum mearconsists of bipolar bitsk and a reliability measure (instantaneous
square error log spectral amplitude (MMSE-LSA) estimatbat  error probability) per received bit. This joint informatican equiv-
minimizes the estimation error w.r.t. the logarithmic gpem alently be described by so-called L-values or by real vakaitbits
A= exp{E{logA|Y}}. X, with —1 <X < +1. A detailed discussion of these representations
Wolfe and Godsill [15] introduced alternatives to the Epimra  is beyond the scope of this paper.
Malah spectral amplitude estimator based on the maximum aThe essential point of error concealment by exploiting guoft

A=E{A)Y} = /A- p(AlY) dA
0 p(Y|A) - p(A)dA

o—g

posteriori estimation rule MAP (9): information is, that within the source decoding procesibdity
information from the channel decoder and a priori knowlealgeut
A= argmaxp(A|R) = arg maxp(R‘A) “P(A) 4 (15)  the source is taken into consideration.
A A p(R) In the soft decision source decoding approach, the tablkufwo

The MAP spectral amplitude estimator exploits the a pastiedien- ~ modules are replaced by conditional parameter estimators.
sity p(alb) = p(A|R), conditioned on the observed noisy amplitude. The actual overall transmission system is depicted in Fig. 5
Another alternative was introduced by Wolfe and Godsill][ib

form of a joint MAP amplitude and phase estimator which rssul g, ce Encoder Source Decoder

in a very similar weighting function. Parameter quantization | _ |Parameter estimation

In [11] and [12], a super-Gaussian model has been appliednn ¢ o N o X i xkl — e R

bination with the MAP or joint MAP approach of Wolfe and God- Egl‘]’;ﬁ:f" || aPpoieior (= Estimation f—~

sill. Here the resulting efficient weighting rule allows ateatation J | Pi! P

of the underlying super-Gaussian statistical model to¢la¢distri- Bit mapping | /T 4 777777 TAL 77777

bution of the speech spectral amplitude. Under the assampfi reliability a-priori- Table
information ~ knowledge entries (¥ 0

a real-valued weigh6(l) (i.e. that the noisy phase &f(l) is the

phase of the estimat&| )) the maximum of
Figure 5: Error concealment by soft decision source degpdin

p(A alY), resp. logp(A,alY))



The codec parametgg at time instank is quantized accordingto  In the general case we can model the quantized parameter as

QW] = vie with v € {vl) i =0,1,...2 —1} = QT (QT: quanti- & Markov process. To find out an appropriate Markov order it
zation table) and can be represented by the quantizatiteitatex i convenient to measure terms suchRisy), P(x | xk-1), or
i. At the time instank a bit combination P(xk, xk_1) or even higher order conditional and joint probabili-
ties. This can be achieved by applying a large signal da¢atmas
xk = (%(0), X(1), ... X(M —=1)) (17)  the source encoder and by counting how often the differeahqu

tizer output symbols, or different pairs of output symbascur.
consisting ofM bits is assigned via bit mapping (BM) to each We callP(xy) Oth order a priori knowledge (AKO) because it gives
quantized paramete# (or quantization table inde¥. There isa  a statistical description of a Oth order Markov process, aenem-
unique mapping between the quantizer lewgland the bit patterns  oryless process. Accordingly, we c&{xy | xx_1) or P(xy, xk_1)
Xy € {x('), i=0,1,...2M — 1} The bits are assumed to be bipolar, 1st order a priori knowledge (AK1) because it refers to a tsen
i.e.,xc € {—1, +1}. Due to the channel noise, the received bit com-Markov process.
binationxy is possibly not identical to the transmitted one. In the For simplicity we restrict here to the case of a Oth order Mark
conventional hardbit decoding scheme the received bit auatibn ~ process. Then the statistical model of the parameter dsrafishe
Xy is applied to table look up decoding (inverse bit mappingstdt  measured histogram of the quantized parameter, i.e. thmbpile
(BM~1)). Thereafter, the decoded parameigis used within the  ties P(x(i)) - P(v(i))’ i=0,1,...2M — 1. With the entropy defined
specific parametric source decoder algorithm to recortssamples gs
$of the speech signal (see also Fig. 1). M1

The concept of error concealment by soft decision sourceddec H(xk) = — Z) P(x")log,P(x"). (19)
ing (SD) as depicted in Fig. 5, requires reliability infortioa in 1=
terms of estimated instantaneous bit error probabilities the redundancy diR = M —H(xy) can be exploited for error con-
cealment.

4.2 Conditional Estimation for Error Concealment

of the hardbitsk. For parameter estimation we can use once more either the MMSE

The kernel of the SD-algorithm consists of or the MAP criterion. The right decision depends on the djgeci
e step 1: calculation of' a posteriori probabilities parameter. In speech coding, the MAP criterion is appropeag.
p(v(i) | %) = p(x(i) | %) withi € {0,1,...2M -1} for the pitch information, while for filter parameters andrgiactors

the MMSE criterion gives subjectively better results.
Let us assume that the channel related transition probebili
P(%x | x) on bit vector level can be computed from tRe on

e step 2: estimation of a real-valued parameter ~

bit vectors softbit vectors | Aok - ' A !

aramoter N . bit level. This is true, if we can derive the (estimated)amsaneous
: analysis * | Equivalent | ¥ | Parameter . bit error rate from the soft output (Fig.6), respectively from the

Q& BM channel p | estimation é decoder reliability DRI (Fig. 5) of the equivalent channélsing

ZaN Bayes' theorem the a posteriori probabilyalb) = P(x() | %)

— a priori knowledge can be calculated as
.
analysis & ——» _— P(%. | x(P(x()
quantization ¢ P(X(I) ‘ Xk) = ( k| ) ( ) - (20)

2P x)P(xD)

Figure 6: Model of soft decision error concealment by caodl
estimation. Correspondence with respect to Fig. 2b:
v = a (quantized parameter}, = b (softbit vector),v= &

If we have received a certain bit pattefq, then the probability
P(x(V | %) quantifies the reliability of the decision that the pattern
x() and thus the quantized parameter valiewas transmitted at
imek.

Fig. 6 shows the model of this approach. With regard to Fig.t The MAP estimator follows the criterion

2b the analysis block A delivers a quantized parameter.g. a

predictor coefficient of a speech codec (see also Fig. 5).oim ¢ U=v) with j=arg ma)p(x(i) | %). (21)

trast to that, the analysis block B produces the quantizesiore I

v of this parr;meter 'r:‘ terms cif the bit pa:]tem 'Il'hisht_)itrg;;tern MAP estimation minimizes the probability of an erroneousabizd

is transmitted over the equivalent noisy channel, whici ces &

disturbance (in addition t?) the quantizeyr). At the’receg'vd!md we Earameter._ The decoded paramat’grequals one of the_ c_ode-
) ; A ook/quantization table entries. In case of error-freagmaission

have a possibly degraded bit pattern plus some reliabiifyrma- 1 one of the ¥ a priori probabilities takes the value 1, all the

tion, represented by the softbits The task of the estimator is 10 qhers are 0. In this situation the MAP-decoder selects dnees

det_ermlne an es_tl_me_lteacco@ng to the MMSE or MAP criterion, (opje entry as the conventional table-look up decoder.

taklpg _the reliability information from_the channel decoded the In applying the MMSE solution according to (5) we have to take

a priori knowledge about the source into account. into consideration, that the statistics of the parametersiescribed

- here by discrete probabilities. Therefore, the integraléehto be

4.1 Statistical Parameter Modelsfor Error Concealment replaced by discrete summations. The optimum decoded péeam

In specifying the required a priori knowledge there are salee in a minimum mean square error sense equals

grees of freedom. We need a priori knowledge about the qaexhti "

parameter in terms of theé"2probabilitiesP(x()) = P(v()), i = -2 pix |3 22

0,1,...2 —1, i.e., the histogram of the quantized parameter V= i; VPP | &) (22)
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Figure 7: The concept of iterative source—channel dec@tiingoo error-concealment” [18]).

According to the orthogonality principle of linear mean arpies-
timation (see, e.g., [5]) the variance of the estimatiomreey =
Uk — Vk is 02 = 02 — o with 62 being the variance of the undis-
turbed parameter, and 0§ denoting the variance of the estimated
parametery. Because obg > 0 we can state that the variance of
the estimated parameter is smaller than or equals the earizrihe
error free parameter.

For the worst case channel wilh = 0.5 the a posteriori prob-
abilities simplify toP(x() | %) = P(x("). If in this case the un-
quantized parametey as well as the quantization table entn’é’%
are distributed symmetrically around zero the MMSE estauata-
rameter according to Eq. (22) is attenuated to zero (by weigh
averaging). These symmetries are often found for gain fa¢fus
sign) in speech and audio encoders. Thus the MMSE estimation
gain factors results in an inherent muting mechanism piogie
graceful degradation of the signal quality. This is one @&f thain
advantages of soft decision source decoding.

On the other hand, if the channel is free of errqus=t 0) andx (%)
has been transmitted, then all the parameter transitiooapitities
are zero excefl®(Xy | x(¥)) = 1. This yieldsP(x(¥) | &) = 1 while
all other a posteriori probabilities become zero. As a cqusace,
also the MMSE estimator yields the correct parameter valaevy.
This is equivalent to bit exactness in clear channel sibnati In
practical applications e.g. in the GSM transmission lifile sub-
jective speech or audio quality can significantly be impcbivethe
presence of residual errors at the output of the channebéeco

4.3 Further Improvements: Iterartive Source Channel Decod-
ing

Finally, it should be mentioned that the concept of soft siec
source decoding opens up possibilities for iterative ssurhannel
decoding, e.g., [19], [20], [21], [22]. This approach ofrfjband it-
erative source-channel decoding is callerbo error-concealment
[18]. The decoding process is based on the turbo princif@g B
illustrated in Fig. 7. One of the two component decoders iseme
nel decoder, the other is a soft decision source decoder.inflee
SISO channel decoder providestrinsic informatiorto the soft de-
cision source decoder which itself extracts extrinsiciimfation on
the bit level from the parameterposterioriprobabilities and feeds
it back to the channel decoder. After terminating the iferet, the
final step consists of estimating the codec parameter asiloedc
in Section 4.2 using the resulting reliability informati@it error
probabilities) on the parameter level.

5. BANDWIDTH EXTENSION (BWE)

In today’s public telephone networks, the limitation to eduency
range of about 0.3 to 3.4 kHz causes the typical sound of the
narrowbandtelephone speech. As long as there are still (sending)
narrowband terminals in the network, artificial bandwidtieasion

is a very attractive feature for any receiving wideband teah
[24], [25]

The basic concept of artificial bandwidth extension is tol@xp
implicit redundancy of the linear source-filter model, whits
widely used in speech coding and recognition. This mode} con
sists of anauto-regressivgAR) filter (corresponding to the vocal
tract) and a source producing a spectrally flat excitatiaccokding
to this model bandwidth extension is divided into two sefsarasks
[26]:

o theextension of the spectral envelopithe speech signal and
o theextension of the excitation signal

A common feature of most of the algorithms proposed in litee
is, that in a first step, the baseband of the excitatiod.(03.4 kHz)
is obtained from the narrowband speech signal by linearigtied
(LP). The excitation signal is spectrally flat and can be moég to
the frequency band.05...7.0 kHz by simple spectral folding or
(pitch synchronous) modulation techniques (e.g. [26]],[28]).

In a second step, the spectral envelope of the wideband tlspeec
signal is estimated in terms of LP coefficients or in termshef t
corresponding cepstral coefficients.

Finally in a third step, the artificial wideband speech sigmaro-
duced by applying the extended excitation signal to theneidd
AR-filter.

A simplified block diagram of such an approach is given in Big.
[29],[28], where the wideband spectral envelope is esthah
terms of cepstral coefficientg,p.

The estimated cepstral coefficietd{g, are converted to the wide-
band LP-coefficienta,, which describe the all-pole (vocal tract)
filter 1/A(z) of the source-filter model. The estimation is based on
the observation of a feature vectrthat is extracted from the nar-
rowband speech signaly(k), which has been interpolated before
to the sample rate ofs = 16 kHz.

By applying the corresponding (inverse) FIR analysis fiﬁ(al)
to the narrowband input signgly(k), an estimateip(k) of the nar-
rowband excitation signal (prediction residual) is dediveince the
analysis filter is the inverse of the vocal tract (synthefli®r. The
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Figure 8: Block diagram of the BWE algorithm

extension of the excitation signebnverts the narrowband excita-
tion signalupp (k) into an extended versiam,s (k) by exploiting the
spectral flatness. The extended wideband excitation sigagk) is
fed into the wideband all-pole synthesis filtetAlz) to synthesize
the enhanced output speegip (k).

In the bandwidth extension algorithm described here [28],[the
method of conditional estimation is applied in a more sdjdaged
version than for acoustical background noise reductiothes pri-
ori knowledge is now based on a state model of speech praaucti

Here, the kernel task of extending the spectral envelopkebeil
considered only. Fig. 9 describes this task in the contexbafli-
tional estimation according to Fig. 2a.

wideband narrowband
speech speech
Degradati A
swb(k) 1 ceracation Sub(k) Feature X Bandwidth Cwb
[\ v extraction b extension a
fi__f» -

a priori knowledge

LP Cwb
a

. ——— cepstral coefficients
Analysis

050403

Figure 9: Model of bandwidth extension by conditional estiion
Correspondence with respect to Fig. 2gp=a, X =b, éyp=4a
(vectors); wb=wideband; nb=narrowband

BWE algorithm the state§ have to be identified by classification
of the narrowband speech sigrsgj.

For each signal frame a vect® of features which should de-

liver maximum information about the stafe is extracted from the
narrowband signal. The vect® contains features like normalized
autocorrelation function, zero crossing rate, normed &amergy,
gradient index, local kurtosis and spectral centroid, faletailed
description refer to [28].
The connection between the observatiddsnd the state§ (and
thus the corresponding codebook entrégy is contributed by a
state-specific statistical model. For each sttthe featuresX as
well as the unknown spectral envelopgy exhibit characteristic
statistical relations. The following statistical quaiettcan be mea-
sured during an offline training process with represergatwde-
band speech signatgy(k) and corresponding narrowband signals
Shb(K):

e the codebook entrieg of the vector quantizer (e.g. by using

the standard LBG training algorithm [30])

o the state probabilitieB(S)

¢ the conditional feature PDRXX|S)
(observation probabilities).

Note: In [29],[28] a hidden Markov model(HMM) is used. How-
ever, for explaining the basic concept, a simpler state irisd®n-
sidered here, which does not take into account the statsitiian
probabilities.

During the training process, wideband speech is neededdo-ca
late the true state sequence and the narrowband speechdisouse
determine the conditional observation PDFs of featureoredX.

As theobservation PDRs conditioned to the stat® there exists
a separate PDB(X|S) for each state. According to the definition
of the state model, it is assumed that the observaKofor each
frame only depends on the particular frame.

A common way to model measured high-dimensional probgbilit
density functions is the approximation wiBaussian mixture mod-
els(GMM; see, e.g., [31], [32]).

5.2 Conditional Estimation for Bandwidth Extension
By the MMSE estimation rule according to (5) a continuous$- est

With regard to Fig. 2a, the two analysis procedures A and B argnation of the parameter vectog, shall be performed with the a

different. By the analysis A, we calculate via linear préidic (LP)
analysis, the vector of cepstral coefficieatg, of the wideband

posteriori PDFp(alb) = p(c|X).
Thus theminimum mean-square errqMMSE) estimator for the

speech signad,y(k), whereas analysis B delivers a feature vectorcepstral coefficient vector is given by

X which is extracted from the narrowband sigsa(k). The band-
width extension algorithm estimates the cepstral coefftsieising
the feature vector and an underlying state model of speextupr
tion. Each speech frame of 20 ms with time or frame indexan
be characterized by a staf i = 1,...Ns, the typical vector of
cepstral coefficient§; and the "measured” feature vect&r. For
simplicity the frame index will be omitted in the sequel.

5.1 Statistical State Model for Bandwidth Extension

Each state5, i = 1,2,...Ng of the model is assigned to a typical
speech sound (frame of 20 ms) which is associated with agepre
tative envelope;.

The states of the model are defined by the enigjesf a vector
quantizer(VQ) of the spectral envelope representatiQy (vector
of cepstral coefficients of the wideband speech signal)h eao-

troid ¢; of the vector quantizer represents the spectral envelope of

a typical speech sound. However, wideband spaggls available
only in the training phase, whereas in the application plofiskee

00 00

Eumse = E{c|X} = / /C- p(c|X) dc. (23)

Because we do not have a model of the conditional RID&HX)
in closed-form, this quantity has to be expressed indiyegt the
states of the model

Ns
P(eiX) = 5 ple.1X). (24)

Insertion ofp(c, §|X) = p(c|S,X) - P(§|X) into (23) yields

eMMSE:EP(sm)-/---/cp(c|s,X>dc, (25)

—00 —00

which can be written as:



Ns
Cumse = Zéi P(S1X). (26)
i=
Hence, the estimated coefficient séfuse is calculated by a
weighted sum of the individual code book entrigs Which are
weighted by the respective a posteriori probabilities & torre-
sponding states. Accordingly, the described MMSE estimzdo
be interpreted in analogy to the error concealment algoritte-
scribed in Section 4 assoft classification

The a posteriori probabilit(S|X) can be formulated in terms of
the measured state probabilitie€S) and the measured conditional

feature PDFp(X|S) as follows:

P(S‘X) — p(S?X) _ p(X|S)P(S)

Px) st p(X[S)P(S)
In the denominator of (27) the hardly tractable PPEX) of the

27)

observation sequence has been replaced by a summationhever t

marginal density of the joint PDB(Sj, X) = p(X|Sj) - P(Sj).

6. CONCLUSIONS

If speech is transmitted in the presence of acoustical lvackgl

noise over a wireless digital telephone channel, the spgaah

ity at the receiving end may be degraded. First of all, theespe
quality is limited due to the telephone frequency charastier
(0.3...3.4 kHz) of A/D conversion.
of the speech codec will be reduced by the acoustical baokgro
noise. Finally, residual bit errors occur, if the channetatier is

temporarily overloaded during adverse channel conditions

ferent advanced approaches of speech enhancement, i.e.
e noise reduction (NR)
e error concealment (EC)
e bandwidth extension (BWE).

It has been shown in this contribution that the solutionsébtor

these problems have the same mathematical roots of camalitio

Bayesian estimation. From an algorithmic point of view, thain
differences consist in the underlying statistical modedseu on
probability density functions in the case of NR, on discneteb-
abilities in the EC-application and a mixture of probakgkt and
densities in the case of BWE.

For simplicity, the concepts have been explained withokinta
frame-to-frame correlation into account. However, thiteazgion is
straightforward and can be found in the cited literature.

Secondly the performance

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

(10]

These three sources of degradation can be combated by ifiree d

(11]

(12]

(13]

(14]

For each of these three topics state of the art approaches and

recent new solutions have been presented.
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