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ABSTRACT

In this work, we show how particle filter (PF) based speech feature
enhancement can profitably be combined with soft-decision missing
feature reconstruction. The combined approach is motivated by the
fact that standard minimum mean square error noise compensation
techniques fail to give accurate estimates of the clean speech spec-
trum if the noise spectral power significantly exceeds that of speech
in a particular spectral region. Experiments show that the proposed
algorithm can reduce the word error rate by up to 26.1% relative,
compared to 17.0% for speech feature enhancement based solely on
particle filters.

Index Terms— missing feature reconstruction, soft-decision,
mean imputation, particle filter, speech feature enhancement

1. INTRODUCTION

Noise compensation methods such as the vector Taylor series (VTS)
approach [1], sequential expectation maximization (EM) [2], inter-
acting multiple models (IMMs) [3] or particle filters (PFs) [4, 5] typ-
ically first form a minimum mean square error (MMSE) estimate of
the noise that corrupts speech and thereafter compensate for it. This
works well as long as the noise spectral power does not significantly
exceed that of speech. If it does, the affected portion of the speech
spectrum is occluded as portrayed in Figure 1 and it is impossible
to say what the underlying clean speech spectrum was. Figure 2
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Fig. 1. Occlusion: in regions where the noise is over 10dB louder
than speech the observed noisy speech spectrum is effectively inde-
pendent of the clean speech spectrum.

shows how clean speech with a power of 0, 15, 20 and 25 dB respec-
tively is distorted by additive noise using the well-established model
[1, 2, 3, 4, 5] of acoustic distortion in the log spectral domain. At
an observed power of 35 dB — marked by a dotted horizontal line
— the four curves are very close to each other. Thus, a slight mis-
estimation of the noise power can cause the MMSE clean speech
estimate to vary between approximately 0 and 30 dB.
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Fig. 2. Effect of additive noise to a clean speech spectral bin of 25
(solid curve), 20 (dashed curve), 15 (dotted dashed curve) and 0 dB
(dotted curve), respectively

Missing feature reconstruction avoids this problem by explicitly
modeling the effect of noise as occlusion of the clean speech spec-
trum, but on the other hand fails if the noise is not strong enough to
actually cause occlusion. Hence, we propose here the combination
of MMSE speech feature enhancement and missing feature recon-
struction, as originally described in [6] for spectral subtraction. As
the noise and therefore the occluded regions of the speech spectrum
are likely to vary in time, we use a particle filter to both enhance
speech and simultaneously obtain a running estimate for the proba-
bility of occlusion. This probability is subsequently used to recon-
struct the occluded spectral bins with the soft-decision mean impu-
tation approach explained in Section 2. Section 3 shows how the
probability of occlusion can be computed within the particle filter
framework.

2. MISSING FEATURE RECONSTRUCTION

Missing feature approaches model the effect of noise in the log Mel
domain as occlusion of the clean speech spectrum. The occluded



portion is considered to be lost or “missing” and the objective of
missing feature reconstruction is to reconstruct this missing portion
based on its statistical relationship to the unoccluded portions of the
spectrum. If the clean speech distribution is modeled as a Gaussian,
the statistical relationship can be the mean and covariance as is in
conditional mean imputation [7] or just the mean of the occluded
part as in mean imputation [7]. This is usually extended to the use of
Gaussian mixtures, as it is well known that the statics of speech are
strongly dependent on the phoneme currently being spoken.

In the remaining part of this section we give an alternate and
slightly generalized derivation of Raj’s soft-decision mean imputa-
tion approach [8], which can be regarded as a refinement of the soft-
decision mean imputation method devised in [9]. The approach is
based on a diagonal covariance Gaussian mixture model for clean
speech and reconstructs the clean speech spectrum as a weighted
sum of mean imputations of the individual Gaussians.

2.1. A model for occlusion

Denoting noisy speech, clean speech and noise spectra in the log Mel
domain as y, x and n respectively, the occlusion can be formally
expressed as

yd:max(xd,nd), d= 1,...,D7 (l)

where D is the dimensionality of the Mel filterbank. The occluded

components are typically given by a mask @ = {61, ...,0p} with
1, x4 is observable
Oa=2< " 2
¢ {0, x4 is occluded @

As there might be uncertainty in 64, the use of soft-decision masks
or simply soft-masks has been proposed in [9], [10] and [8], whereby
the decision in (2) is replaced by the probability of x4 being observ-
able:

0(1 = P(.’L‘d Z nd). (3)

When a portion of the clean speech spectrum is occluded, all that is
known is that it must lie below the observed noisy speech spectrum.
Hence, it is reasonable to assume that an occluded clean speech com-
ponent z4 is bounded above by y4. As we add 1 to each of the Mel
bins before taking the logarithm — as common in speech recognition
—itis also bounded below by 0. Consequently, the distribution of the
missing components of the clean speech spectrum can be modeled
by truncating the original distribution. As clean speech is typically
modeled as a Gaussian mixture

K
=D N pe, Zn)
k=1
with diagonal covariance matrices £, = diag(o} 1, ..., 0% p), this
devolves to truncating Gaussians.

2.2. The doubly truncated Gaussian distribution

Truncated Gaussian distributions are well known in the statistical lit-
erature. In our case, we are dealing with doubly truncated Gaussian
distributions [11], which are defined as
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where C denotes the cumulative Gaussian distribution, and where

N (z; p, 02)|Z is NV (x; 1, o) on the interval [L, U], zero outside.

p(xaly, 0, k) = 040y, (xa) +

Fig. 3. Gaussian (dashed grey curve), truncated Gaussian (solid
curve)

Truncating a Gaussian also changes its mean, which was not taken
into account in [7, 9], but was in [8]. For a doubly truncated Gaussian
the mean can be shown [11] to be
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which will directly be used in the upcoming section.

2.3. Mean imputation

The idea behind mean imputation is to replace the occluded clean
speech spectral bins with their means, or, in light of the discussion in
the previous section, with their truncated means. For soft-masks this
is slightly more complicated. Assuming the clean speech spectrum
x comes from the k-th Gaussian of the mixture, the likelihood of z4
given the observation y and mask 6 is

(1= 0N (245 pir,a, 1,).
where d,,, is a Dirac-delta translated to y4. Hence, the corresponding

mean is an interpolation of the observed noisy speech spectrum with
the mean of the truncated Gaussian:

Ya
Eledly, 0.k = / vap(zaly, 0, k)dzs
0

Oaya + (1 — Oa) iy ). (6)

This can be extended to Gaussian mixtures by marginalization over
the mixture components,

K
'Td|y7 Zp 33d,l€|y,
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Then, rewriting p(zq, k|y, 0) as p(z4ly, 6, k)p(k|y, ) the mean of
the truncated mixture can be shown to be
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where p(k|y, 0) is the posterior probability that the underlying clean
speech spectrum belongs to the k-th Gaussian.



2.4. Posterior probability of a particular Gaussian

Using Bayes’ rule the probability that clean speech originated from
the k-th Gaussian, given the observation y and soft-mask 6, can be
expressed as

p(yl0.k)p(k) _  ckp(yl6, k)
p(y|0) S cwp(y|0, k)
where p(k|0) is the prior probability p(k) = ci. Further, assuming

the spectral bins to be statistically independent, p,(y|6, k) can be
factorized as

p(k‘|y, 0) =

®
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where the py, (ya|0, k) can be represented as marginal distributions
of the p(ya, x4, 4|0, k):

pyd<yd|0,k>=/7:/7:p<

with

Yd, Td, nd|0, k)dxadng,  (10)

P(Ya, ©a,nal0, k) = p(yalTa, na, 0)pe(xalk)pn(na).  (11)

In equation (11) it was assumed that speech and noise are statistically
independent. Now, using the occlusion model (1) we have

(Sz (yd) 94 =1
T4,nq,0) = d ’
Plyalza, e, 0) {6”d(yd)7 0a =0
for hard decision masks. In the soft decision case, where 6 is the
probability of x4 being observed, this becomes

P(Yda|Td, na, 0) = 040z, (ya) + (1 = 0a)dn,(ya).  (12)

Combining equations (10), (11) and (12) and bounding both x4 and
nq below by 0 and above by y4 we obtain

Ya
Do (al® k) = Oupa(ya) / pa(na)dng  +
0

(1= 64)pn(va) / Y pe(ea)des. (13)
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If we further assume that ng is uniformly distributed on [0, yq4] we
obtain Raj’s result [8]:

(1—464)

P(0<zq <wyalk), (14
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where P(0 < 24 < yalk) = C(ya; i, 92,a) — C(0; pir,a, 0% 4)-
Note that the more general form in equation (13) of this derivation
explicitly allows the use of prior knowledge about the noise. This
might be applied to approaches like [8] where the distribution of the
noise is known.

3. PARTICLE FILTER BASED SOFT-MASK ESTIMATION

A variety of different methods has been proposed for mask estima-
tion, including computational auditory scene analysis (CASA) [7],
spectral subtraction [6], the difference between cube root signal and
noise energy [10], Bayesian classifiers as well as the Max-VQ algo-
rithm [8]. We use a particle filter. In order to explain how it can be
used for mask estimation, we briefly sketch its operation (for details
see [5, 12]): the particle filter for noise tracking approximates the

probability distribution p(n.) of the noise spectrum at time ¢ as a set

of N weighted noise hypotheses n<] )

N
_ (4) )
t) = E 1% 8,0 (me),
P

where the wm are the weights. This distribution is updated at each
time ¢, using the following procedure:

1. Sampling: The noise hypotheses are propagated forward in
time according to a dynamical system model that is either
autoregressive as in [5, 12], dynamic autoregressive as de-
scribed in [13], or a transition based on Polyac averaging and
feedback [13].

2. Weight Evaluation: The weights w(] ) of the noise hypothe-

()

ses n,”’ are evaluated according to

det (Ly““t))‘ (15)

Py (ye|ne) = pz(f(ye,01)) dy,

where p, is an auxiliary clean speech Gaussian mixture
model and where X; = f(y¢, n¢) is a noise compensation
function, typically f(y:,n:) = log(e¥* — e™). The mul-
tiplication by the absolute Jacobian determinant in equation
(15) is due to transforming the probability density from p,
to p,. After, the weights are normalized through division by

N
poy j=1 ng).
3. Resampling: The noise hypotheses are pruned by multiply-

ing hypotheses that have a relatively high weight and remov-
ing hypotheses that have a relatively low weight.

Now the soft-mask can be estimated as follows: the noise com-
pensation function f(y:, n:) from the particle filter can be used to
obtain an estimate of the clean speech distribution from p(n¢):

N
x) =Y w6 ) (x:)
=1 '
with xg = f(ys, nt ) Then, using p(n:) and p(x:) the probabil-
ity

P(zi,a > nea) = / /

can be approximated by Monte Carlo integration:

ZZW w(” xijg ni](ﬁ) (16)

Jj=1j'=1
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where u is the unit step function. Alternatively, a sigmoid function
can be used as in [10]. Mask smoothing—averaging neighboring
bins of the mask—increased performance slightly.

4. EXPERIMENTS

In the experiments reported below we used the phase-averaged par-
ticle filter described in [14] with 100 particles. For the proposed
algorithm, the soft-mask was estimated according to equation (16).
Subsequently, the noisy speech features were first enhanced, using
the statistical inference approach (SFA) described in [12], then re-
constructed according to equations (7) and (6). The posterior prob-
abilities p(k|y, @) were calculated according to equations (14), (9)
and (8).



The feature extraction of our ASR system was based on Mel
frequency cepstral coefficients IMFCC)s. After cepstral mean sub-
traction (CMS) with variance normalization, 15 consecutive MFCC
features were concatenated and subsequently reduced by linear dis-
criminant analysis (LDA) to obtain the final 42-dimensional feature.
The decoder used in the experiments is based on the fast on-the-
fly composition of weighted finite-state transducers (WFSTs), as de-
scribed in [13, §8]. The triphone acoustic model was trained with 30
hours WSJO and 12 hours WSJCAMO data, resulting in 1,743 fully
continuous codebooks with a total of 70,308 Gaussians. The aux-
iliary 128 component clean speech gaussian mixture model, used
by the particle filter as well as missing feature reconstruction, was
trained on the same data set.

The proposed particle filter for combined speech feature en-
hancement and missing feature reconstruction (PFR) was evaluated
through a series of automatic speech recognition experiments. These
experiments were conducted on the close talking channel of speak-
ers 16-25 of the multi-channel Wall Street Journal audio visual
(MC-WSIJ-AV) corpus [15]. The corresponding 352 utterances were
artificially contaminated by adding noise from the NOISEX-92 [16]
database at different signal-to-noise ratios (SNR)s. Table 1 shows
the results in comparison to the baseline (no PF) as well as to the

5dB 10dB 15 dB
| PF Ist | 2nd. | Ist | 2nd Ist | 2nd

none || 91.7 | 79.1 | 81.0 | 56.0 | 70.3 | 36.9
destroyer | PFE || 86.7 | 72.0 | 73.2 | 47.9 | 63.3 | 33.1
PFR || 84.5 | 71.5 | 69.9 | 47.5 | 58.8 | 32.1

none || 58.7 | 29.0 | 49.5 | 224 | 454 | 20.1
leopard PFE || 54.8 | 26.0 | 47.1 | 20.6 | 41.1 | 20.3
PFR || 49.0 | 263 | 42.2 | 20.0 | 40.5 | 19.8
none || 75.7 | 534 | 63.7 | 345 | 55.2 | 25.8
factory2 | PFE || 70.6 | 499 | 53.6 | 31.1 | 45.8 | 24.2
PFR || 66.6 | 50.6 | 51.8 | 32.3 | 40.9 | 232

noise

Table 1. Word error rates (WER)s for the particle filter (PFE), the
particle filter with missing feature reconstrution (PFR) and the base-
line (none) on the unadapted (1st) and adapted (2nd) pass. For clean
speech the WER was 41.9% and 20.5% respectively.

particle filter without reconstruction (PFE), for a first, unadapted
speech recognition pass as well as an adapted pass using constrained
maximum likelihood linear regression (MLLR) [17]. On the un-
adapted pass the PFR clearly outperformed both the PFE and the
baseline. The greatest gain was achieved on factory noise where,
at 15 dB, the WER of the PFR was 26.1% lower than the baseline,
compared to 17.0% for the PFE. On the adapted pass the results
were not as clear: though the PFR always performed better than
the baseline, it sometimes performed worse than the PFE. For 15dB
destroyer engine and factory noise the PFR showed an additional
gain of 3% and 4% relative over the PFE. For 10dB factory noise it
performed worst — 2% (relative) worse than the PFE.

5. CONCLUSIONS

We have motivated why MMSE noise compensation and missing
feature reconstruction should be combined and shown how the par-
ticle filter can be used for soft-mask estimation. The good results on
the unadapted pass lead us to believe that this approach is worth to
be further pursued.
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