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ABSTRACT
Subband system identification has proved beneficial in appli-
cations such as acoustic echo cancellation. A problem for
blind multichannel system identification in subbands is that
the subband systems can only be identified correctly up to an
arbitrary scale factor. This scale factor ambiguity is the same
across all channels but can differ between the subbands and
therefore, limits the usability of such estimates. We show how
the relation between the subband and the full-band estimates,
together with the full-band cross-relation error, can be used to
resolve the scale factor ambiguity problem. The operation of
this approach is demonstrated with simulated experiments.

Index Terms— Blind system identification, Oversampled
filterbanks, Scale factor ambiguity

1. INTRODUCTION

Blind system identification (BSI) is of interest in several fields
of engineering including communications, exploration seis-
mology and speech and audio processing [1]. Within the area
of speech and audio processing BSI is an important compo-
nent for speech dereverberation [1][2][3]. The BSI problem
can be stated as follows: consider a signal s(n) which is pro-
duced in a multipath environment such as a reverberant room
and transmitted to an array of M sensors at a distance from
the source. The observed signal at the mth sensor is then
given by

xm(n) = h
T
ms(n) + νm(n), (1)

where hm = [hm,0 hm,1 . . . hm,L−1]
T is the L-tap impulse

response between the source and the mth sensor, s(n) =
[s(n) s(n− 1) . . . s(n− L + 1)]T is the input signal vector,
νm(n) is additive measurement noise and [·]T denotes ma-
trix transpose. The problem of BSI is to find the impulse re-
sponses hm using only the observations xm(n).

Several second order statistics BSI algorithms are based
on the cross-relation (CR) between two channels [4]

x
T
m(n)hl = x

T
l (n)hm, m 6= l, (2)

where xm(n) = [xm(n) xm(n − 1) . . . xm(n − L + 1)]T .
Taking all the different channel combinations into considera-
tion, a system of equations can be formulated as

Rh = 0, (3)

where h = [hT
1 h

T
2 . . . h

T
M ]T is a vector of the concate-

nated impulse responses and R is a correlation matrix of the
input signal. The channel responses h can then be identi-
fied exactly, up to a scale factor α, by finding the eigenvec-
tor corresponding to the smallest eigenvalue (which is zero
in the noise-free case) of R. This solution can be achieved
using, for example, singular value decomposition [2] or adap-
tive filters [5], provided that the following identifiability con-
ditions are satisfied [4]: (i) that the autocorrelation matrix of
the source signal is of full rank and (ii) that there are no com-
mon zeros between the channels.

There are several problems associated with BSI algo-
rithms. First, the accuracy of the estimates is degraded when
the observations are noisy and in the presence of common or
near-common zeros between the channels. Secondly, long im-
pulse responses, commonly occurring in acoustic signal pro-
cessing, result in large computational complexity and lower
the estimation performance due to increased occurrence of
common or near-common zeros [6, 7].

One approach to improve the performance of system iden-
tification algorithms is to apply them in a subband framework;
this has shown benefits in terms of computational complexity
and performance improvement in applications such as acous-
tic echo cancellation [8]. A study of a subband BSI system
was presented in [2], highlighting the benefit of the shorter
channels to be estimated compared to the full-band case. In
general, however, blind system identification in subbands has
received much less attention than the non-blind case (for ex-
ample, acoustic echo cancellation) and one reason for this is
the scale factor ambiguity across the different subbands which
limits the use of such approaches [2]. In this paper, we pro-
pose a method to correct this scale factor ambiguity by em-
ploying a cross-relation error between the different channels
together with the reconstructed full-band impulse responses
from the estimated channels in the subbands.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the subband blind multichannel identification
method using an oversampled filterbank. In Section 3, a re-
lationship between the full-band response and the subband
responses is presented and is employed to develop the scale
factor correction method. Simulation results are presented in
Section 4 and conclusions from this work are drawn in Sec-
tion 5.



2. SUBBAND BLIND MULTICHANNEL
IDENTIFICATION

For this work we employ the generalized discrete Fourier
transform (GDFT) filterbank with K subbands decimated by
a factor of N . Although this design results in complex sub-
band signals, for K even, only K/2 subbands need to be
processed since the remaining subbands are complex conju-
gates of these. The advantages of the GDFT filterbank in-
clude straightforward implementation of fractional oversam-
pling (N ≤ K) and computationally efficient implementa-
tions [8].

Within the framework of the GDFT filterbank, the analy-
sis filters, uk,i, are calculated from a single Lpr-tap prototype
filter, pi, with bandwidth 2π

K according to

uk,i = pie
j 2π

K
(k+k0)(i+i0), i = 0, 1, . . . , Lpr − 1, (4)

where we set the frequency and time offset terms to i0 = 0
and k0 = 1/2 as in [9]. A corresponding set of synthe-
sis filters, vk,i satisfying near perfect reconstruction is ob-
tained from the time-reversed, conjugated version of the anal-
ysis filters [8], vk,i = u∗

k,Lpr−i−1. The oversampled sub-
band structure allows aliasing between adjacent subbands to
be suppressed to a very low level (around −90 dB in our im-
plementation); this facilitates a full-band transfer function,
Hm(z), to be related to a set of subband filters H ′

mk(z), k =
0, 1, . . . , K/2 − 1 with only one filter per subband [9].

Consequently, the blind system identification from (3) can
be applied in each subband as

Rkh
′
k = 0, k = 0, 1, . . . , K/2 − 1, (5)

where h
′
k = [h

′T
1k h

′T
2k . . . h

′T
Mk]T . Now, assuming that the

identifiability conditions are satisfied, each subband estimate
ĥ
′
k will be determined up to a complex scale factor αk such

that
ĥk = αkhk. (6)

It is evident from (6) that for a particular k the scale factor
will be the same across the M channels but for any particular
channel will be different across the K/2 subbands. If the sub-
band estimates are used to equalize the observed signal, the
scaling discrepancy will propagate to the reconstructed full-
band signal. Alternatively, if a full-band impulse response is
reconstructed from the subband estimates, the reconstructed
impulse response will be incorrect; this will be demonstrated
by the experiments in Section 4.

3. SCALE FACTOR AMBIGUITY CORRECTION

We concluded Section 2 with the remark that reconstructing a
full-band impulse response from subband filters with different
scale factors will result in an erroneous full-band estimate.
We now show how this fact can be used to our advantage in

order to correct for the scale factors. We here define scale
factor correction in terms of a correction term βk that can
take on any value which results in β0α0 = β1α1 = . . . =
βK/2−1αK/2−1.

3.1. Subband to full-band filter reconstruction

The relationship between a full-band transfer function and
a set of subband transfer functions can be found using the
complex subband decomposition [9]. The objective of the
subband decomposition is to find a set of subband filters,
H ′

mk(z), k = 0, 1, . . . , K/2 − 1, given the full-band filter,
Hm(z), such that the total transfer function of the filter bank,
Fm(z), is equivalent to that of the full-band filter up to an ar-
bitrary scale factor, κ, and an arbitrary delay, τ . This can be
written

Fm(z) = κz−τHm(z), ∀m. (7)

The L′-tap subband filters with impulse responses h
′
mk =

[h′
mk,0 h′

mk,1 . . . h′
mk,L′−1]

T are then estimated by solving
the following optimization problem [9]

ĥ
′
mk = arg min

h
′

mk

||UN,kh
′
mk − rmk||

2, (8)

where rmk = [rmk,0 rmk,1 . . . rmk,⌈(L+Lpr−1)/N⌉]
T is a

vector with rmk,i = (hm,i ∗ uk,i)↓N , UN,k is the convolu-
tion matrix of the downsampled subband filter, (·)↓N denotes
downsampling by a factor of N , ‘*’ is the linear convolu-
tion operator and ⌈a⌉ denotes the ceiling operator giving the
smallest integer greater than or equal to a. The length of h

′
mk

is

L′ =

⌈

L + Lpr − 1

N

⌉

−

⌈

Lpr

N

⌉

+ 1. (9)

The mth channel, kth subband filters are calculated in the
least squares optimal sense according to

ĥ
′
mk = (UT

N,kUN,k)−1
U

T
N,krmk. (10)

Inversely, the full-band response can be calculated given
a set of subband responses using the relation

ĥm = ℜ







K/2−1
∑

k=0

fmk







, (11)

where fmk = [fmk,0 fmk,1 . . . fmk,L−1]
T with the ith ele-

ment fmk,i =
(

(uk,i)↓N ∗ h′
mk,i

)

↑N
∗vk,i and ℜ{a} denotes

the real part of a.

3.2. Scale factor correction

It will be demonstrated with the simulation results in Sec-
tion 4 that the reconstructed full-band system response in (11)
is not correct when there are different scale factors in each
subband. This leads to the key idea of this paper: from (2) we



can formulate an error as in [5] but using the reconstructed
full-band impulse responses from (11)

elm = x
T
mĥl − x

T
l ĥm

= x
T
mℜ







K/2−1
∑

k=0

flk







− x
T
l ℜ







K/2−1
∑

k=0

fmk







, (12)

for m, l = 1, 2, . . . , M and k = 0, 1, . . . , K/2 − 1. We have
excluded the dependency of xm on the discrete time variable
n as any L-sample frame from the observed signals can be
used in this case.

The error in (12) will be large when the channel estimates
are incorrect due to the scale factors αk. Consequently, this
can be exploited to correct for the scale factors by minimizing
this error. There are generally two possible ways to incorpo-
rate this into the subband blind system identification frame-
work:

(i) as a constraint on the subband multichannel identifica-
tion;

(ii) as a post-processing step after identification.

In this paper, we consider the second of these approaches.
It is assumed that the subband channels have been estimated
accurately (up to a scale factor) such that they satisfy the re-
lation in (6). Then we introduce a parameter βk which is to
correct the effect of αk. The error can now be written

elm = x
T
mℜ







K/2−1
∑

k=0

βkαkflk







−x
T
l ℜ







K/2−1
∑

k=0

βkαkfmk







.

(13)
Parameters αk are unknown but we can control parameters
βk. In order to find βk we would like to minimize the error
in (13) using

β̂k = argmin
βk

M−1
∑

m=1

M
∑

l=m+1

e2
ml, k = 0, 1, . . . , K/2−1. (14)

subject to
||βk||

2 > 0, ∀k.

It is interesting to note that (13) can be rearranged by mov-
ing xm inside the summation which causes the scale factors
to cancel. This is equivalent to introducing the signal into
the channel reconstruction and demonstrates that minimizing
the error in the subbands also minimizes the full-band error.
However, this does not result in accurate full-band channel es-
timates and, therefore, the optimization problem in (14) needs
to be solved by first reconstructing the full-band estimates
and then calculating the error. A straightforward approach
that has been found suitable for solving this problem is the
Simplex method [10]. The scale factors are complex and are
treated by the Simplex algorithm as two parameters per sub-
band. Therefore, there are K free parameters to optimize.

4. SIMULATIONS AND RESULTS

We now present some simulation results to demonstrate the
scale factor ambiguity correction algorithm. In particular two
main features are investigated: (i) the effect of the variance
of the scale factors across the different subbands and (ii) the
effect of misalignment in the identified channels.

We use two different metrics in our evaluation procedure.
First, the Normalized Projection Misalignment (NPM) is em-
ployed to measure the misalignment between two impulse re-
sponses (disregarding the scale factor) and is defined as [11]

NPM = 20 log10

(

1

‖h‖

∥

∥

∥

∥

∥

h −
h

T
ĥ

ĥT ĥ
ĥ

∥

∥

∥

∥

∥

)

dB. (15)

Second we use the normalized variance of the corrected scale
factors, defined as

ξ =
var(Aβ)

||Aβ||2
, (16)

where A = diag{α0 α1 . . . αK/2−1} is a diagonal matrix
with the true scale factors and β = [β0 β1 . . . βK/2−1]

T are
the correction coefficients. If the parameters βk correct the
scale ambiguity such that the scale factor is uniform over all
subbands, then ξ = 0.

The filterbank used for the following experiments uses
K = 8 subbands with a decimation factor N = 4. An
Lpr = 64-tap prototype filter was designed using the iter-
ative least squares method [8], giving an estimated aliasing
suppression of 92 dB. The source signal was white Gaussian
noise with a system of M = 3 randomly generated channel
responses of length L = 256 whose tap values were drawn
from a zero-mean Gaussian distribution. The equivalent sub-
band filters were calculated using (10) and scale coefficients
αk were generated randomly with varying variances and ap-
plied to the subband channel components.

In the first experiment, we introduced scale factors with
different variances and measured the NPM of the full-band
reconstructed impulse responses (NPMf ) before and after the
scale factor ambiguity correction algorithm. Figure 1 shows
the outcome of this experiment. It can be seen that the vari-
ation of the scale factors across the subbands has little ef-
fect. We also observe that, as expected, these scale factors
cause the reconstructed full-band channels to be inaccurate
with NPMf close to 0 dB. Applying the scale factor ambigu-
ity correction method resolves this issue, resulting in channels
with NPMf in the vicinity of −80 dB.

In the second experiment, we simulated various levels of
misalignment in the subband filters (measured as NPMs),
so that the mth channel in the kth subband is given by
ĥmk = αk(I + Emk)hmk, where I is the identity matrix,
Emk = diag{ǫmk,0 ǫmk,1 . . . ǫmk,L′−1} and the variance
of ǫmk,i is set according to the desired NPMs. We then



10
-2

10
0

10
2

10
4

-100

-80

-60

-40

-20

0

Scale Factor Variance

N
P

M
f (

d
B

)

 

 

Before correction

After correction

Fig. 1. Full-band NPM vs. scale factor variance before and
after scale factor correction. The subband NPM is assumed to
be NPMs = −∞ dB.
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Fig. 2. Varying levels of subband NPM vs. (a) full-band NPM
before correction, after correction with the proposed method
and after correction with the ideal coefficients and (b) scale
factor error.

used these subband channels to investigate the results ob-
tained with the Simplex algorithm in terms of full-band mis-
alignment, NPMf and the variance of the corrected scale co-
efficients calculated using (16). The results, averaged over
100 scale factor realizations, are shown in Fig. 2. Figure 2a
shows the subband NPM versus full-band NPM before and
after scale factor correction and the ‘ideal’ case where αk is
known. Figure 2b shows the normalized variance of the cor-
rected coefficients. We can deduce the following from these
results: (i) the scalar factor estimation algorithm degrades
with decreased NPMs; (ii) scalar factor correction has little
effect at NPMs < −10 dB, even if the exact values were
known; (iii) the proposed method operates with great accu-
racy at NPMs ≤ −50 dB.

5. CONCLUSIONS

The scale factor ambiguity in subband multichannel blind sys-
tem identification has been investigated. The relationship be-
tween a full-band transfer function and an equivalent set of
subband transfer functions has been utilized to formulate a
channel cross-relation error using the reconstructed full-band
filters from subband estimates. It has then been shown how
this error can be used to correct scale factors that differ be-
tween different subbands but not between different channels
in the same subband. The error was minimized with the Sim-
plex algorithm to find a set of scale factor correction coef-
ficients. Simulation results showed that, although the algo-
rithm’s performance degrades with increased misalignment in
the subband channel estimates, it accurately solves the scale
factor ambiguity problem when the channel identification is
good (NPMs ≤ −50 dB).
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