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ABSTRACT

We develop a new blind source separation (BSS) microphone named
SSM-001 which can separate multiple sounds in real-time under
noisy conditions. The BSS microphone is based on our previously
proposed BSS algorithm which combines a Single-Input Multiple-
Output (SIMO)-model based BSS and SIMO-model based binary
masking. We modify this algorithm and implement it to DSP for
the purpose of more effective and realistic real-time operation. In
this paper, the issue of real-time implementation in the BSS micro-
phone is illustrated in detail, and the experimental evaluations of the
hardware reveal the proposed BSS microphone’s efficacy.

Index Terms— DSP, blind source separation, real-time imple-
mentation

1. INTRODUCTION

Real-time separation of target sound and noises is demanded for
many applications, e.g., speech dialogue systems, cellular phones,
and car navigation systems. Blind source separation (BSS) is bene-
ficial to this purpose because BSS is a flexible approach to estimate
original source signals using only the information of the mixed sig-
nals observed in each input channel. We have recently proposed a
novel two-stage BSS algorithm [1] which combines (a) Single-Input
Multiple-Output (SIMO)-model-based ICA (SIMO-ICA) [2] and (b)
SIMO-model based binary masking [3] (SIMO-BM) applied to the
SIMO-ICA’s outputs. Also we continue to challenge the develop-
ment of a BSS device.

In this paper, first, we mainly report an issue of real-time BSS
implementation on hardware, which yields a new pocket-size BSS
microphone named SSM-001. Several recent research studies [4]
have dealt with real-time implementation of ICA, but still required
high-speed personal computers. Consequently BSS implementation
on a small-size LSI still receives much attention in industrial applica-
tions, so our microphone is equipped with a floating-point small-size
Digital Signal Processor (DSP), and we implement our two-stage
BSS algorithm to the DSP. Next we give extensive evaluations of
SSM-001 from the viewpoint of sound quality, real-time separation
performance, and polar pattern. From these results, we can show the
efficacy of the developed BSS microphone.

2. REAL-TIME BSS MICROPHONE SSM-001

Figure 1 shows a picture of BSS Microphone SSM-001. Also the
main specifications are listed in Table 1. The hardware block dia-
gram is depicted in Fig. 2, and the picture of the internal board is
shown in Fig. 3. As can be seen, SSM-001 is one of the world’s
smallest BSS microphone miniaturized into pocket-size hardware.
We implemented two-stage BSS algorithm to the BSS microphone,
which is based on SIMO-ICA and SIMO-BM [1]. The configuration

Fig. 1. BSS microphone (SSM-001).

Table 1. Specifications of BSS microphone (SSM-001)
processor TI-DSP TMS320VC6727

(Clock 300 MHz)

input internal stereo mic
external stereo mic (plug-in power)

output line out
headphone out

terminal external mic in
lint out

headphone out
sampling frequency 16 kHz or 8 kHz

battery AA battery × 2

memory Flash ROM: 8MByte
(used about 330 KByte)

SDRAM: 128MByte
(used about 1.9 MByte)

size 136 mm (H) × 45 mm (W) × 27 mm (D)
weight about 125 g (including battery)

of two-stage BSS is depicted in Fig. 4. SIMO-BM which follows
SIMO-ICA can remove the residual leakage without adding huge
computations. Due to this paper’s main focus on a real-time imple-
mentation and space limitation, we would skip the detailed descrip-
tion and proof of the algorithm (see [1] for more information).

Figure 5 shows a configuration of a real-time implementation
for the two-stage BSS, and Fig. 6 shows DSP and SDRAM internal
block diagram from the viewpoint of software. Signal processing in
this implementation is performed in the following manner.
[Step1] Input signals are converted to time-frequency series X(f, t)
by using a frame-by-frame fast Fourier transform (FFT), where
X(f, t) = [A11(f)S1(f, t) + A12(f)S2(f, t), A21(f)S1(f, t) +
A22(f)S2(f, t)]T +N(f, t) (Akl(f) is the mixing matrix corre-
sponding to room transfer function, and N(f, t) is the additive noise
term).

This operation in DSP (Fig. 6) is as follows: Audio signals are
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Fig. 2. Hardware block diagram of BSS microphone.
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Fig. 3. Internal board of BSS microphone.

input via McASP (Multi-channel Audio Serial Port), and sent to an
input buffer by DMA (Direct Memory Access) function. If the input
buffer is filled, DMA generates an interrupt, and it wakes up DMA isr
routine. The ICA filter task is called in DMA isr routine, then input
signals in input buffer are converted to time-frequency series in the
ICA filter task.
[Step2] SIMO-ICA is conducted using current data samples of a
few seconds duration (Ts in Fig. 5) for estimating the separation
matrix, which is applied to next (not current) duration samples as
soon as the optimization of SIMO-ICA filter is finished. The iterative
calculation in SIMO-ICA’s ICA part is given as

W
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= W
[j ]

(ICA1)(f) − α

"(
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where α is the step-size parameter, and Φ(·) is the appropri-
ate nonlinear vector function. We obtain the following solutions
Y (ICAl)(f, t) = [Y

(ICAl)
1 (f, t), Y

(ICAl)
2 (f, t)]T (l = 1, 2) via
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Fig. 4. Two-stage BSS algorithm.

SIMO-ICA without considering the permutation effect (see [2] for
the proof).

Y (ICA1)(f, t) = W (ICA1)(f)X(f, t)

= [A11(f)S1(f, t), A22(f)S2(f, t)]T + E1, (2)

Y (ICA2)(f, t) = (I − W (ICA1)(f))X(f, t)

= [A12(f)S2(f, t), A21(f)S1(f, t)]T + E2, (3)

where Ei is the residual errors. Since each output of SIMO-ICA
is again approximate to array signal at microphone positions, so we
can concatenate an appropriate post-processing for eliminating the
residual errors Ei.

This operation in DSP (Fig. 6) is as follows: The filter up-
date in SIMO-ICA is executed in an independent task named Opti-
mizeW task. The OptimizeW task, which is called by PRD (Periodic
Function Manager), checks the fft buffer periodically, to which the
ICA filter task also sends time-frequency series. When fft buffer is
filled, the OptimizeW task begins to optimize the filter W (f), and
updates them in W buffer. The filter update in SIMO-ICA requires
substantial computational complexities, but we realized to finish this
process using 3-s-duration data at most 100 iterations within 0.5 sec-
onds (corresponding to Tl in Fig. 5). Therefore, the filter update in-
volves totally a latency of only within 3.5 seconds in case of using
3-s-duration.
[Step3] SIMO-BM is applied to the separated signals obtained by
the previous SIMO-ICA. Unlike SIMO-ICA, binary masking can be
conducted just in the current segment. The resultant output signal
corresponding to the source 1 is determined in the proposed SIMO-
BM as follows:

Ŷ1(f, t) = m1(f, t)Y
(ICA1)
1 (f, t), (4)

where m1(f, t) is the SIMO-model-based binary mask operation
which is defined as m1(f, t) = 1 if

Y
(ICA1)
1 (f, t)

> max[|c1Y
(ICA2)
2 (f, t)|, |c2Y

(ICA2)
1 (f, t)|, |c3Y

(ICA1)
2 (f, t)|];

(5)

otherwise m1(f, t) = 0. Here ci is the parameter to balance the
separation ability and the sound quality. Typically c1 = 1, c2 = 0,
and c3 = 0 ∼ 1. The source 2 is obtained by the same manner.
[Step4] The output signals from SIMO-BM are converted into the
resultant time-domain waveforms by using an inverse FFT. SIMO-
BM and this process are executed in the ICA filter task in Fig. 6.

Although the separation filter update in the SIMO-ICA part is
not real-time processing but includes a latency of a few seconds,
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DMA_isrMc
ASP DMA

ICAfilter_task

interrupt

Input buffer Output buffer

DMA Mc
ASP

OptimizeW_task

fft buffer W buffer

PRD DSP

Input
signal

Output
signal

SDRAM

Fig. 6. DSP & SDRAM internal block diagram.

the entire two-stage system still seems to run in real-time because
SIMO-BM can work in the current segment with no delay. Gener-
ally, the latency in conventional ICAs is problematic and reduces the
applicability of such methods to real-time systems. In this method,
however, the performance deterioration due to the latency in SIMO-
ICA can be mitigated by introducing real-time binary masking.

3. SOUND QUALITY EVALUATION

To grasp the BSS microphone’s basic behavior, we measure the fol-
lowing three scores. First, noise reduction rate (NRR) [5], defined as
the output signal-to-noise ratio (SNR) in dB minus the input SNR in
dB, is evaluated as the objective indication of degree of interference
reduction (we don’t take into account the sound distortion). Sec-
ondly we measure cepstral distortion (CD) which indicates the dis-
tance between the spectral envelope of the original source signal and
the target component in the separated output (CD doesn’t take into
account the degree of interference reduction unlike NRR). Thirdly
we score PESQ MOS-LQO (ITU-T Recommendation P.862.1) which
is comparable with Mean Opinion Score (MOS), and corresponds to
the subjective indication of sound quality related to both NRR and
CD.

In order to simulate the sound mixing, many impulse responses
was measured in 200-ms reverberant room, and convolved with
dry speech signals. Two speech signals are assumed to arrive from
different directions, (θ1, θ2) = (0◦, ..., 90◦,−90◦, ..., 0◦), and
(θ1, θ2) = (−90◦, ..., 0◦, 0◦, ..., 90◦) in intervals of 10◦. Two
types of sentences, spoken by two male and two female speakers
selected from ASJ continuous speech corpus for research, are used
as the original speech samples. Using these sentences, we obtain

(a) noise reduction rate (b) cepstral distortion (c) PESQ MOS-LQO
c3 c3 c3
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Fig. 7. Quality evaluation: (a) noise reduction rate, (b) cepstral dis-
tortion, and (c) PESQ MOS-LQO.
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Fig. 8. Layout of reverberant room used in experiments.

12 combinations with respect to speaker pair for each (θ1, θ2). The
sampling frequency is 8 kHz. This experiment is noise free, i.e, we
do not consider an additional background noise. In ICA part, we
use a null-beamformer-based initial value [5] which is steered to
(−60◦, 60◦).

Figure 7 shows the measurement results, where Fig. 7(a) shows
NRR, Fig. 7(b) shows CD, and, Fig. 7(c) shows PESQ MOS-LQO.
These results are average values of all the combinations of θ1 and θ2.
We compare three methods as follows: (A) the conventional binary-
masking, (B) the conventional SIMO-ICA, and (C) the proposed
two-stage BSS method (ICA part in (B) or (C) uses 3-s-duration
buffering for estimating the separation matrix). From these results,
we can confirm that NRR can be improved as the c3 parameter in-
creases, but CD results in a larger value, i.e., the sound quality be-
comes worse. Based on the above-mentioned tradeoff, c3 = 0.1 is the
best parameter for PESQ MOS-LQO. This means that slight gain of
c3 provides the best sound quality for human hearing. Note that,
from our preliminary experiments, c3 should be increased to more
than 0.1 especially under more noisy conditions.

4. EXPERIMENTS IN REAL-TIME PROCESSING

4.1. Separation performance for moving sound
In this section, a real-recording-based BSS experiment is performed
using the BSS microphone in a real acoustic environment (see
Fig. 8), where two loudspeakers and the BSS microphone are set.
The reverberation time in this room is 200 ms. Two speech signals,
whose length is limited to 32 seconds, arrive from different direc-
tions, θ1 and θ2, where we fix source 1 in θ1 = −40◦, and move
source 2 under two conditions in Table 2. Two types of sentences,
spoken by two male and two female speakers selected from the
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Table 2. Moving conditions for sound source 2 in θ2

θ2 0 → 10 sec 10 → 11 sec 11 → 21 sec 21 → 22 sec 22 → 32 sec

(a) 10◦ 10◦ → 30◦ 30◦ 30◦ → 50◦ 50◦

(b) 50◦ 50◦ → 30◦ 30◦ 30◦ → 10◦ 10◦

ASJ continuous speech corpus for research, are used as the original
speech samples. Using these sentences, we obtain 12 combinations
with respect to speakers and source directions. Average of SNR
between each speech signal and background noise is 26 dB.

We compare five methods as follows: (A) the conventional bi-
nary masking, (B) the conventional SIMO-ICA with 1-s-duration
buffering, (C) the conventional SIMO-ICA with 3-s-duration buffer-
ing, (D) the proposed BSS with 1-s-duration buffering, and (E) the
proposed BSS with 3-s-duration buffering. In the proposed BSS
method, we set [c1, c2, c3] = [1, 0, 0.5], which gives the best perfor-
mance (high NRR but low distortion) under this background noise
condition.

Figure 9 shows the averaged segmental NRR for 12 speaker
combinations, which was calculated along the time axis at every
0.5 s period. Figure 9(a) shows the clockwise-moving result of
NRR, and Fig. 9(b) shows the counterclockwise-moving result of
NRR. Both Figs. 9(a) and (b) show that the proposed BSS with 3-s-
duration buffering outperforms binary masking and the conventional
SIMO-ICA at almost all the time during 3–32 s. The difference
between proposed BSSs with 1- and 3-s-duration bufferings is that
1-s-duration buffering can provide slightly rapid improvements in
the early period and just after source moving, but the performance
for the static sources is quite low compared with 3-s-duration buffer-
ing. This is due to that 1-s-duration data is too short to evaluate the
sources’ statistical independence. From these results, hereafter, we
introduce 3-s-duration buffering for the two-stage BSS implemented
in SSM-001.

4.2. Polar pattern of separation performance
In this section, we show the polar pattern of the BSS microphone’s
separation performance to visually indicate the proposed BSS’s
spatial-acoustical behavior. Figure 10(a) shows the measurement
condition. We carried out real-time sound separation using source
signals recorded in the real room where two loudspeakers and the
real-time BSS microphone are set. Two speech signals with 30-s
length arrive from different directions, θ1 and θ2, where we fix
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Fig. 10. Polar pattern of separation performance: (a) measurement
condition, and (b) measured result.

source 1 in θ1 = −45◦, and arrange source 2 from θ2 = 0◦ to
θ2 = 360◦ in intervals of 5◦. We set [c1, c2, c3] = [1, 0, 0.5], and
evaluate NRR considering that source 1 is the target and source 2 is
noise.

Figure 10(b) depicts the measured results. We can confirm that
our BSS microphone has a great noise-reduction ability in the right-
side area ranging θ2 = −5 ∼ −185◦. On the other hand, the BSS
microphone is not proficient in reducing noise (source 2) in the left-
side area. This is due to that (a) ICA part cannot separate the narrow-
angle sources accurately, and (b) binary masking cannot work well
because we do not employ the stereo microphone’s directivity (i.e.,
power difference); both sources located in left-side area could not
give an apparent signal power difference. This problem remains as
our future work, and we have proposed an improved algorithm to
handle the disadvantage [6].

5. CONCLUSION

We introduced and evaluated a new BSS microphone named SSM-
001 which can separate a target sound in a noisy environment in
real-time. We revealed that the BSS microphone has unprecedented
performance. This motivates us to hope that the technologies of the
BSS microphone will be adopted by many applications in the future.
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