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ABSTRACT
In this paper we present a new model-based blind speech

separation for underdetermined case. Under sparsity assump-
tion, separation is achieved by applying soft time frequency
masks to observations. The masks are derived by estimating
the parameters of an ad-hoc distribution of the Interchan-
nel Level/Phase Difference (ILD/IPD). These parameters
are estimated using an expectation-maximization (EM) pro-
cedure. The performance of the algorithm is evaluated on
real-world convolved mixtures using the database of the first
audio source evaluation campaign [1]. Results show that the
proposed algorithm outperforms the algorithm presented in
the campaign in terms of artifacts and distortion noise.

Index Terms— Sparse Source Separation, Time Fre-
quency Masking, ILD/IPD modeling, EM algorithm.

1. INTRODUCTION

Recently, Underdetermined Blind Speech Separation (UBSS)
has received much attention and especially the stereo case
where researchers tend to limit their observations to two mi-
crophones, mimicking the natural ear separation. Most of
the proposed UBSS methods [2, 3, 4] mainly rely on the as-
sumption of sparse speech sources being disjoint in the Time-
Frequency (TF) domain [2]. This results in the presence of
a dominant source at each time-frequency (TF) point. Thus,
sources can be separated by applying binary TF masks where
features, like ILD/IPD, are used to estimate the index of the
dominant source.

In case of anechoic mixing, the IPD, normalized by fre-
quency, is constant and may be used as a signature to inden-
tify each sources over the whole TF domain (see for instance
[2, 3]). In real-world convolved mixtures we cope with, the
anechoic assumption is no longer valid, since the normal-
ized IPD varies with frequency. This implies that feature
estimation and source separation should be done in each fre-
quency band independently. In [4] the authors propose to sep-
arate sources using a hierarchical clustering in each frequency
band. Another approach, also by frequency band, consists

in modelling the interchannel cues using an a priori distri-
bution. In [5], the authors proposed to model the ILD/IPD
variables as Gaussian distribution with the assumption of a
dominant path. Nevertheless, in real-world situations, the un-
derlying linear phase assumption deriving from the dominant
path constraint reveals not applicable due to early reflections
and reverberation.

In this paper, we propose to use a two dimension proba-
bilistic model as in [5], without any constraint on the phase. A
parametric joint distribution is proposed for the couple of fea-
tures (log(ILD), IPD) considered as random variables. The
parameter estimation and the mask computation are derived
using an EM algorithm, yielding a soft TF masks that repre-
sents the probabilities of each source at each TF point. Note
that, as we focus on the separation performance, the tradi-
tional frequency permutation problem [6] is supposed to be
solved.

2. PROBLEM FORMULATION

Consider the convolved stereo mixture model:

xj (t) =
N∑

i=1

∑
k

aji (k) si (t− k) =
N∑

i=1

(aji ∗ si) (t) (1)

where si(t), i = 1, .., N are the sources, ∗ denotes the
convolution symbol and aji(k) are the impulse response
of the acoustic path from source i to microphone j with
j = 1, 2. The time-domain observed signals xj(t) are con-
verted into frequency-domain time-series xj(t, ω) signals
using the Short-Time Fourier Transform (STFT):

Xj(t, ω) =
L−1∑
k=0

w(k)xj(t + k)ejωk =
N∑

i=1

X
(i)
j (t, ω)

where w(k) is a window (e.g. Hamming) and X
(i)
j (t, ω) is

the STFT of the contribution of the ith source to the jth sen-
sor, that is of x

(i)
j (t, ω) = (aij ∗ si)(t). Working in the TF

domain has two advantages: sparseness of speech signals be-
comes prominent and the convolutive mixtures in (1) can be
approximated as instantaneous mixtures at each frequency:



Xj(t, ω) =
∑N

i=1
X

(i)
j (t, ω) ≈

∑N

i=1
Aji(ω)Si(t, ω) (2)

where Aji(ω) is the frequency response of the filter {aji(k)}
and Si(t, ω) is the STFT of si(t). Under the disjoint assump-
tion of the source TF supports, only one source is dominant at
each TF bin (t, ω), so that the sum in (2) contains one single
non negligible term. Thus (2) can be approximated as:

Xj (t, ω) ≈ X
(q)
j (t, ω) ≈ Ajq (ω) Sq (t, ω)

where Sq(t, ω) is the dominant source at the TF point (t, ω).
The ratio would then be:

R (t, ω) =
X1 (t, ω)
X2 (t, ω)

≈ X
(q)
1 (t, ω)

X
(q)
2 (t, ω)

≈ A1q (ω)
A2q (ω)

. (3)

Being frequency and source dependent, the ratio R(t, ω) is
used in each frequency band to identify the sources. Note that
the modulus and argument of this ratio are the traditional ILD
and IPD used in previous method [2, 3, 4, 5].

3. MODELLING OBSERVED RATIO

The second approximation made in (3) is only valid when the
length L of the analysis window is much larger than that of
the filter response aji(k). However, in real reverberant room
and due to speech stationarity constraint, L is usually smaller
than the reverberation time; therefore such approximation is
no longer valid. In fact, a detailed analysis not shown here for
lack of space, reveals that for a given source i, the logarithm
of the one-source observed ratio log[X(i)

1 (t, ω)/X
(i)
2 (t, ω)] is

not constant in each frequency band. Instead, at a given fre-
quency ω, the time set of this log ratio can be shown theoret-
ically to be a random variable with real and imaginary parts
(x, y) that admits a joint density of the form:

pρi(ω) [x− log |ri (ω)| , y − arg ri (ω)] (4)

where ri(ω) and ρi(ω) are specific to the ith source. They
respectively stand for its position in space and for the rever-
beration degree of the acoustic path between source i and the
set of microphones. Further, the distribution probability func-
tion pρ is given by:

pρ (x, y) =
1
4π

1− ρ2

[cosh (x)− ρ cos (y)]2
(5)

So for a given frequency band ω and for the set of consid-
ered time points t ∈ T , we are led to assume the following
model for the distribution of the real and imaginary parts of
log[R(t, ω)]:

p (x, y|ρ, r,µ) =
N∑

i=1

µipρi
{x− log |ri| , y − arg ri} (6)

where ρ = [ρ1, .., ρN ], r = [r1, .., rN ] and µ = [µ1, .., µN ],
µi denoting the a priori probability of the ith source in the
considered frequency band. Note that the parameters ρ, r
and µ depend on frequency ω but for simplicity and readabil-
ity, we will omit this variable in the rest of paper. Since from

now, we implicitly work at a given frequency band. The para-
meters in (6) can be estimated, for example, by the maximum
likelihood method based on the data (log |R(t)|, arg R(t)),
t ∈ T . Once estimated, the a posteriori probability that ith

source is dominant at the TF point (t, ω) can be obtained by:

πi (t) =
µipρi [log |R (t) /ri| , arg R (t) /ri]∑N

q=1 µqpρq
[log |R (t) /rq| , arg R (t) /rq]

(7)

The source separation can thus be performed, independently
in each frequency band, by directly applying these a posteri-
ori probabilities to the observations.

Note that, in many practical situations, the a posteriori
probabilities πi(t) given in (7) are either nearly one or zero
If we suppose that the points r1, .., rN are well distant so that
there is only one term in the denominator of which dominates
all other terms. Thus, if location parameters ri are correctly
estimated, the exact form of the density (4) is not very impor-
tant since it affects little the a posteriori probabilities. More-
over, as this family of densities will lead to a likelihood func-
tion not easy to maximize, we propose to replace the density
(5) by the following one:

pα,β(x, y)=
e−|x|/α

2α

e(cos y−1)(1−β)/β

C (β)
, α>0, β∈ [0, 1] (8)

where C (β) =
∫ π

−π
e(cos y−1)(1−β)/βdy is the normalising

constant. Thus in (6) we replace pρ by pα,β and in (7) pρi

by pαi,βi
. The model density is changed but still belongs to a

location family admitting log |R(t)|,arg R(t) as mean, mode
and median (since the function pρ and pα,β are both symmet-
ric in both its arguments). This is important as we have seen
that location parameters ri should be correctly estimated. The
density pα,β has exponential tail (in it first argument) like pρ.
The distribution (8) implicitely assumes that the variables are
independent. The form of distribution given by (5) does not
guarantee such hypothesis: nevertheless, a statistical analy-
sis of the couple (x, y) shows that they may be assumed as
decorrelated. Note that we have used a 2-parameters family
(8) to approximate a 1-parameter family (5). This is conve-
nient for computational purpose but also provides flexibility
for a better approximation.

4. THE EXPECTATION-MAXIMIZATION

To estimate the model parameters µi, ri, αi, and βi for
each source at each frequency band ω, we propose to use
as criteria the maximum of the log-likelihood of the data
log |R(t)|, arg R(t), t ∈ T . A standard way to maximize the
likelihood in presence of hidden variable is to use an EM
algorithm [7]. In our case, the hidden variable is the index
that indicates which source is dominant at time t (again,
the frequency ω is fixed). Under the independence assump-
tion between the time set of observations, the EM algorithm
operates as follow:



4.1. The E-step

This step computes the expectation of the full log likelihood
given the data. The full likelihood will be computed at generic
parameters µ′

i, r′i, α′
i, and β′

i and the conditional expectation
is computed relative to the model specified by the current pa-
rameter µi, ri, αi, and βi. The result can be shown to be:

∑
t∈T

N∑
i=1

πi (t) log
{

µ′
ipα′

i,β
′
i

[
log

∣∣∣∣R (t)
r′i

∣∣∣∣ , arg
R (t)
r′i

]}
(9)

where πi(t) is the a posteriori probability given in (7).

4.2. The M-step

This step maximises the above conditional expectation of the
full log likelihood with respect to the generic parameters µ′

i,
r′i, α′

i, and β′
i. The maximum point is then taken as the new

parameter. It is easily seen that the maximization of (9) with
respect to µ′

i (under the constraint
∑N

i=1 µ′
i(t) = 1) and with

respect to the set (r′i, α′
i, β′

i) can be performed independently.
The first maximisation yields the new µi: µi =

∑
t∈|T | πi(t)

where |T | denotes the number of points in T . The second one
is reduced to the maximisation of:∑

t∈T

πi (t)
{
− log αi −

|log |R (t)/ri||
αi

}
+

∑
t∈T

πi (t)
{

(1− βi)
βi

cos arg
R (t)
ri

− log C (βi)
}

with respect to ri, αi, and βi. it’s maximization with respect
to ri yields to:

ri = exp {med [log |R (t)| , πi (t)]} sign
∑
t∈T

πi (t) sign R (t)

where med{ξ(t), µi(t)} is the median of ξ(t) with the relative
probabilities µi(t) and sign(z) = z/|z|. Inserting this value
into the above expression, it can be seen that it is maximised
when:

αi =
∑

t∈T πi (t) |log |R (t) /ri||∑
t∈T πi (t)

and βi is the solution of:

β2

C (β)
dC (β)

dβ
=

∑
t∈T πi (t) {1− cos arg R (t) /ri}∑

t∈T πi (t)

The above left hand side can be shown to be an increasing
function of β: tabulating this function allows us to find the
solution by interpolation.

4.3. EM initialisation

A simple way to initialise our algorithm is to choose randomly
N times points t1,.., tN and initialise ri by ri = R(ti), i =
1..N . Thus, πi(t) can be initialised by formula (7) using the
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Fig. 1. Recording arrangement used for development data.

(non approximated) density (5) with ρi set to one. This yields:

πi(t) =
d[R(t), ri]∑N
i=1 d[R(t), ri]

where d [R (t) , ri] = cosh log [R (t)/ri]− cos arg [R (t)/ri]

5. EXPERIMENTS AND RESULTS

The algorithm is evaluated on the same database used in the
audio source separation campaign [1, 8]. The room’s dimen-
sion and the respective position of sources and microphones
are given in Fig.1. We focus here on live recording of four
male and four female speech signals, sampled at 16 kHz and
with a 10s duration. In order to evaluate the robustness of
the method, two microphones configurations are considered:
5 cm and 1 m spacing. The algorithm uses a 2048 samples
length Hanning window with a 75% overlap and reconstruc-
tion is achieved using the overlap add method. The separa-
tion performance was evaluated for the estimated source i by
the Signal to Interference Ratio (SIRi), Image to Signal Ra-
tio (ISRi), Signal to Distortion Ratio (SDRi) and Signal to
Artefact Ratio (SARi) improvements given by:

SDRi=10 log10

∑M
j=1

∑
t

[
s
(i)
j (t)

]2

∑M
j=1

∑
t

[
es(i)j (t) + ei(i)j (t) + ea(i)

j (t)
]2

ISRi=10 log10

∑M
j=1

∑
t

[
s
(i)
j (t)

]2

∑M
j=1

∑
t

[
es(i)j (t)

]2

SIRi=10 log10

∑M
j=1

∑
t

[
s
(i)
j (t) + es(i)j (t)

]2

∑M
j=1

∑
t

[
ei(i)j (t)

]2

SARi=10 log10

∑M
j=1

∑
t

[
s
(i)
j (t) + es(i)j (t) + ei(i)j (t)

]2

∑M
j=1

∑
t

[
ea(i)

j (t)
]2

where es(i)j (t), ei(i)j (t) and ea(i)
j (t) represent filtering distor-

tion, interference and artifacts. These three distinct errors
are obtained by decomposing the estimated contribution of
source i to the jth channel, ŝ

(i)
j (t), into:



Live Recordings Female 5cm Male 5cm Female 1m male 1m OAP
S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 MeanSi

MBUSS
Algorithm

SDR(dB) 2.9 2.5 4.0 4.1 2.1 1.4 3.9 3.9 4.1 2.7 5.8 3.9 3.1 2.5 4.7 4.1 3.5
ISR(dB) 5.2 4.3 5.4 9.0 4.8 2.4 7.9 6.7 6.7 5.2 8.5 6.0 5.3 5.2 6.9 7.2 6
SIR(dB) 3.8 3.6 5.7 4.6 1.0 0.7 4.0 5.5 5.9 2.5 8.4 5.3 4.0 1.4 7.1 5.6 4.3
SAR(dB) 6.7 6.4 8.4 8.3 6.7 5.1 8.8 8.1 7.8 6.4 10.0 7.5 6.0 6.2 8.0 7.3 7.4

Sawada
Algorithm

SDR(dB) 2.6 -0.8 1.7 4.2 3.0 0.4 3.2 3.9 4.5 3.8 7.4 3.3 3.0 1.5 5.2 2.3 3.1
ISR(dB) 6.5 4.5 2.8 10.4 7.4 1.4 10.5 9.9 9.1 8.0 13.1 6.2 7.9 4.7 9.0 6.5 7.4
SIR(dB) 4.4 -2.2 5.4 7.7 5.6 1.7 4.0 6.7 8.0 7.1 12.2 7.4 5.1 2.6 11.0 4.7 5.7
SAR(dB) 5.6 6.3 3.7 6.1 4.6 0.7 7.1 6.2 6.3 5.4 9.5 4.7 4.7 2.7 6.1 4.6 5.3

Table 1. Results for live recording with two microphone spacing (5cm, 1m) and two different types of speaker the overall
performance of the source separation is presented in the last column.

ŝ
(i)
j (t) = s

(i)
j (t) + es(i)j (t) + ei(i)j (t) + ea(i)

j (t)

Roughly, the es(i)j (t) stands for the distance between the es-

timated ŝ
(i)
j (t) source and the filtered version of the source,

ei(i)j (t) is the quantity of other sources present in the esti-

mated source and ea(i)
j (t) stands for the degradation of the

estimated source itself (see for instance [8]).

Performance results are given in Table 1 and are compared
with one of the most efficient algorithm in the campaign. First
of all, let us note that, in terms of SDR which is the global
performance, the proposed algorithm is more or less equiva-
lent to the Sawada algorithm: the overall performance (OAP)
column shows a slight advantage for the proposed method
(3.5dB vs 3.1dB). The intermediate errors show that the com-
promise operated by the algorithms is different: Sawada’s
method favours weak interferences (SIR=5.7) to the cost of
more degraded separated speech (SAR=5.3), when the pro-
posed algorithm present stronger interference (SIR=4.3) but
with a clearer separated speech signal (SAR=7.4).

These results are confirmed by informal listening tests:
less interference is audible in the Sawada’s results, at the ex-
pense of more audible artefact and attenuation on speech. Be-
sides the separation method itself, the difference in the ob-
jective and subjective results seems also be connected to the
smoothing of the separation masks: on the contrary to the
Sawada algorithm, no smoothing is applied to our separation
masks. Smoothing permits to reduce the interference charac-
terized by small TF supports (few TF bins), at the expense of
slight degradation and attenuation of the separated source.

6. CONCLUSION

In this paper, we proposed a novel Model-Based Under-
determined Speech Separation (MBUSS) algorithm based
on standard binaural cues, i.e. IPD and log(ILD). Based
on the sparseness assumption and a specific model for the
(IPD,log(ILD)), the algorithm demonstrated its ability to
separate undetermined reverberant mixtures, in terms of ob-
jective criteria as well as in terms of subjective listening.

Nevertheless, some work remains to be done: the frequency
band permutation has to be treated and more research needs
to be done on the effect of the model regardings to source
position and room reverberation.
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