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ABSTRACT

Traditional Maximum Likelihood Sound Source Localization

(ML-SSL) methods assume that the Fourier coefficients of

signals have a Gaussian distribution. In many practical speech

processing applications, the discrete Fourier transform (DFT)

coefficients are computed from finite duration signals, which

makes the Gaussian assumption less favorable choice for sig-

nals whose time-domain distributions are non-Gaussian. Re-

cently, for audio signals including speech, distributions such

as Laplacian or Gamma distribution have been shown to better

model the time-domain samples and their DFT coefficients.

Motivated by this, we propose a new ML-SSL method based

on a multivariate complex Laplacian distribution.

Index Terms— Sound Source Localization, Maximum-

Likelihood Estimation, Multivariate Laplacian Distribution

1. INTRODUCTION

Sound source localization (SSL) is an important topic for

hands-free speech communication systems using a micro-

phone array [1]. For a pair of microphones, time delay of

arrival (TDOA) can be computed using the generalized cross

correlation (GCC) method with the phase transform (PHAT)

or maximum likelihood (ML) prefilters [2]. For SSL with

more than two microphones, we can use the steered response

power (SRP) method as an extension of the GCC [3], TDOA

based projection [4], or the ML estimation by modeling the

multivariate distribution of signals [5].

Motivated by the central limit theorem as well as math-

ematical tractability, maximum likelihood sound source lo-

calization (ML-SSL) assumes the Gaussian distribution for

the discrete Fourier coefficients of signals [2, 5]. In practice

however, a Gaussian model is not always the most accurate

description of discrete Fourier coefficients. In particular, it

has been reported that the distribution of time-domain speech

samples is well represented by Laplacian distribution [6].

It has been also reported that the frequency components of

speech samples are better modeled by distributions such as

Laplacian [7], Gamma [8], or generalized Gaussian [9] than

the Gaussian distribution in the context of speech enhance-

ment, voice activity detection, and blind source separation,

all of which motivate use of non-Gaussian distributions for

the ML-SSL.

Compared to the aforementioned scenarios requiring uni-

variate real or complex distributions, ML-SSL requires a

multivariate complex distribution, which cannot be uniquely

defined for non-Gaussian cases. Eltoft et al. [10] proposed

a multivariate Laplacian distribution as a multivariate scale

mixture of Gaussians using an exponential scale factor.

In this paper, we propose a multivariate complex Lapla-

cian distribution based on [10], and then a new ML-SSL

method using this distribution. We compare our proposed

method to the ML-SSL based on the likelihood function with

multivariate complex Gaussian distribution assumption.

2. BACKGROUND

For an array of M microphones with source signal s(t), signal

xm(t) captured at the mth microphone can be expressed as

xm(t) = hm(t) ∗ s(t) + nm(t), m = 1, · · · ,M (1)

where hm(t) and nm(t) denote impulse response and noise

at the mth microphone and ∗ denotes convolution. We de-

compose the impulse response as hm(t) = dm(t) + rm(t)
with dm(t) and rm(t) representing delay and reverberation

respectively. We can express received signals as a vector in

the frequency domain

Xf = S(f)Df + S(f)Rf + Nf (2)

where

Xf = [X1(f), X2(f), · · · , XM (f)]T

Rf = [R1(f), R2(f), · · · , RM (f)]T

Nf = [N1(f), N2(f), · · · , NM (f)]T

with each element denoting the discrete Fourier transform of
the corresponding signals and

Df = [α1(f)e−j2πfτ1 , α2(f)e−j2πfτ2 , · · · , αM (f)e−j2πfτM ]T

(3)

denoting the delay vector as point-wise multiplication of at-

tenuation αm(f) and time delay τm for m = 1, 2, · · · ,M .



2.1. Maximum-Likelihood Sound Source Localization

With the signal model described above, the ML-SSL prob-

lem for a single frequency f is to find a delay vector Df that

maximizes the likelihood of observing signal vector Xf , i.e.,

D̂f = arg max
Df

L(Xf |Df ) (4)

where L(Xf |Df ) ∝ log p(Xf |Df ) denotes a log-likelihood

function of observing Xf given Df with respect to a properly

modeled p(Xf |Df ). In the case of using multiple frequency

components, adopting the common assumption that the prob-

ability distribution is independent among different frequency

components, i.e., the pdf can be expressed as a product of

those of individual frequency components, then we have

l̂ = arg max
Dl

∑

Df∈Dl

L(Xf |Df ) (5)

where Dl denotes a set of delay vectors Df corresponding to

the source location l.

2.2. ML-SSL with the Gaussian distribution

In order to formulate the joint pdf of signals Xf , we con-
sider the source speech S(f) as deterministic, given signal
Xf and the delay Df , whereas reverberation Rf and back-
ground noise Nf are stochastic, both with zero mean. If we
use a Gaussian assumption for the stochastic parts, then the
pdf of Xf given Df can be expressed as [5]

p(Xf |Df ) ∝ exp



−
1

2
[Xf − S(f)Df ]HQ

−1

f [Xf − S(f)Df ]

ff

(6)

i.e., a complex Gaussian with mean S(f)Df and covariance

matrix Qf defined as

Qf = E
{

[Xf − S(f)Df ][Xf − S(f)Df ]H
}

= E{XfX
H
f } − |S(f)|2DfD

H
f

(7)

where H denotes Hermitian transpose. Provided that the co-

variance matrix Qf is available, we now need to estimate

S(f) given Xf and Df . Zhang et al. [5] derived an estimate

of S(f) which maximizes the Gaussian probability in Eq. (6)

Ŝ(f) =
DH

f Q−1
f Xf

DH
f Q−1

f Df

. (8)

If we take the log-likelihood of Eq. (6) and use Ŝ(f)Df

as its mean, we have

LG(Xf |Df ) = −[Xf − Ŝ(f)Df ]HQ−1
f [Xf − Ŝ(f)Df ]

(9)

and the Maximum Likelihood solution for the Gaussian dis-

tribution has been shown to be [5]

l̂ = arg max
Dl

∑

Df∈Dl

[DH
f Q−1

f Xf ]HDH
f Q−1

f Xf

DH
f Q−1

f Df

. (10)

2.3. Covariance matrix estimation

In order to find the ML-SSL solution, we need to estimate the

covariance matrix Qf . According to Eqs. (2) and (7) with an

assumption that Rf and Nf are uncorrelated, we find [5]

Qf = |S(f)|2E{RfR
H
f } + E{NfN

H
f }. (11)

Provided that we have E{NfN
H
f } by estimating it from

available noise-only data, we approximate |S(f)|2E{RfR
H
f }

as a fraction of the difference between E{XfX
H
f } and

E{NfN
H
f } [5]

|S(f)|2E{RfR
H
f } ≈ λ

(

E{XfX
H
f } − E{NfN

H
f }

)

(12)

for 0 < λ < 1 and use E{XfX
H
f } = XfX

H
f . We can also

use the diagonal covariance matrix assumption [5]

Q̂f = diag (q1(f), q2(f), · · · , qM (f)) (13)

where

qm(f) = λ|Xm(f)|2 + (1 − λ)E{|Nm(f)|2}. (14)

3. PROPOSED METHOD

The joint complex Gaussian distribution in Eq. (6) assumes

uniformly distributed phase, which gives a closed-form ex-

pression for the multivariate complex Gaussian distribution in

terms of a vector of complex signals Xf .Moreover, the com-

monly adopted assumption of uncorrelatedness, i.e., diagonal

covariance essentially makes the multivariate distribution a

product of independent pdfs. However, non-Gaussian mul-

tivariate distributions cannot be uniquely defined and their

uncorrelatedness does not guarantee independence. Using

a multivariate Laplacian pdf derived as a scaled mixture of

Gaussian proposed in [10], we derive a closed-form expres-

sion of multivariate complex Laplacian pdf and propose an

ML-SSL method based on the proposed distribution.

3.1. Multivariate Complex Laplacian distribution

For an M × 1 random vector Y, Eltoft et al. [10] proposed a

multivariate Laplacian as a scaled mixture of Gaussian such

that

Y = yµ +
√

ZΓ
1

2 V (15)

where V is a M × 1 zero mean Gaussian random vector with

an identity covariance matrix, Z is a exponential random vari-

able with mean 2/σ2, and Γ is a positive definite matrix with

unity determinant and interpreted as an internal covariance

structure of Y. From Eq. (15), they derived a multivariate

Laplacian pdf as

p(y) =
σ2

(2π)(M/2)

K(M/2)−1 (σ||y − yµ||Γ)
(

1
σ ||y − yµ||Γ

)(M/2)−1
(16)



where Kb(y) denotes the modified Bessel function of the sec-

ond kind with order b and ||y−yµ||Γ is the Mahalanobis dis-

tance defined as

||y − yµ||Γ =
√

(y − yµ)T Γ−1(y − yµ). (17)

For an M×1 multivariate complex variable Xf with mean

X̄f and an M ×M positive definite Hermitian matrix Cf , we

can define the Mahalanobis distance as

||Xf − X̄f ||Cf
=
√

(Xf − X̄f )HC−1
f (Xf − X̄f ). (18)

Since (Xf − X̄f )HC−1
f (Xf − X̄f ) in Eq. (18) is always real

and positive and a quadratic formula for M complex vari-

ables, it is equivalent to a quadratic formula for 2M real vari-

ables with a 2M × 2M real covariance matrix. Therefore,

the complex Mahalanobis distance of a M × 1 complex vec-

tor in Eq. (18) is equivalent to a real Mahalanobis distance

of 2M × 1 real vector with a corresponding 2M × 2M real

covariance matrix. Hence, we can express a multivariate com-

plex Laplacian pdf of Xf by Eq. (17) for Eq. (18) and replac-

ing M with 2M in Eq. (16) as

p(Xf ) =
σ2

(2π)M

KM−1

(

σ||Xf − X̄f ||Cf

)

(

1
σ ||Xf − X̄f ||Cf

)M−1
. (19)

3.2. ML-SSL with a complex Laplacian distribution

We can define a log-likelihood function based on the Lapla-

cian distribution in Eq. (19) as

LL(Xf |Df ) = log
{

KM−1

(

σ||Xf − X̄f ||Cf

)}

− (M − 1) log
(

||Xf − X̄f ||Cf

)

.
(20)

with mean X̄ = S(f)Df . Since the likelihood is conditioned

upon the delay vector Df , we can use the minimum variance

distortionless response (MVDR) of speech S(f) for the direc-

tion corresponding to Df to estimate X̄.

Suppose that we have an optimal beamformer W̄f to re-

construct S(f)
Ŝ(f) = W̄H

f Xf (21)

in the sense that the reconstructed source speech Ŝ(f) is dis-

tortionless response corresponding to Df , with a constraint

WH
f Df = 1 while maximizing the signal-to-noise ratio

(SNR) by minimizing the overall variance such that

W̄f = arg min
Wf

E{|WH
f Xf |2}

= arg min
Wf

WH
f E{XfX

H
f }Wf

= arg min
Wf

[

WH
f QfWf + |S(f)|2|WH

f Df |2
]

= arg min
Wf

WH
f QfWf .

(22)

Fig. 1. Experimental setup showing source location relative

to microphone array.

It has been shown that the solution for Eq. (22) can be ex-

pressed as [1]

W̄f =
Q−1

f Df

DH
f Q−1

f Df

(23)

which gives

Ŝ(f) =
DH

f Q−1
f Xf

DH
f Q−1

f Df

(24)

which is equivalent to the ML estimation of S(f) with a

Gaussian pdf in Eq. (8).

For matrix Cf acting as a mapping function from multi-

variate Gaussian to Laplacian in Eq. (15), we estimate it by

normalizing the covariance matrix Qf to have unity determi-

nant such that

Cf =
Qf

|Qf |1/M
. (25)

Therefore, the ML-SSL estimate with multivariate complex
Laplacian distribution can be found as follows

l̂ = arg max
Dl

X

Df∈Dl

h

log
˘

KM−1

`

σ||Xf − X̄f ||Cf

´¯

− (M − 1) log
`

||Xf − X̄f ||Cf

´

i

(26)

with X̄f = Ŝ(f)Df from Eq. (24) and Cf from Eq. (25).

4. EXPERIMENTS

In order to demonstrate our proposed method, we made a

clean speech recording of a female speaker at 48 kHz sam-

pling rate for ten seconds. Then we played it through a

loudspeaker in a reverberant room and recorded signals with

a four microphone uniform linear array having 0.2 m inter-

microphone distance and located 2 m away from the loud-

speaker as depicted in Fig. 1. We then degraded the captured

signals with additive white Gaussian noise by varying the

SNR from 6 dB to 24 dB in 6 dB increments. For source

localization, we chose four non-overlapping windows with

duration of 25 ms, 50 ms, 75 ms, and 100 ms and ran ML-SSL

with the likelihood function based on the Gaussian assump-

tion in Eq. (10) and the proposed Laplacian assumption in

Eq. (26) with σ = 4. We ran two sets of experiments, one



Window size 25 ms 50 ms 75 ms 100 ms

SNR Gaussian Laplacian Gaussian Laplacian Gaussian Laplacian Gaussian Laplacian

6 37.34 36.59 44.22 49.25 55.30 59.85 56.57 65.66

12 48.37 59.15 55.28 72.36 62.88 78.79 64.65 85.86

18 49.87 74.44 56.28 85.43 66.67 93.18 68.69 96.97

24 52.63 87.47 57.29 93.97 68.94 99.24 68.69 100.00

Overall 47.06 64.41 53.27 75.25 63.45 82.77 64.65 87.12

Table 1. Experimental results in % accuracy for ML-SSL with identity covariance matrices.

Window size 25 ms 50 ms 75 ms 100 ms

SNR Gaussian Laplacian Gaussian Laplacian Gaussian Laplacian Gaussian Laplacian

6 30.58 36.09 37.69 47.74 37.88 52.27 47.47 62.63

12 45.61 54.14 56.78 67.34 66.67 74.24 73.74 84.85

18 66.92 69.67 80.40 84.92 86.36 91.67 92.93 97.98

24 84.71 84.46 92.96 93.47 97.73 97.73 100.00 100.00

Overall 56.95 61.09 66.96 73.37 72.16 78.98 78.54 86.36

Table 2. Experimental results in % accuracy for ML-SSL with estimated covariance matrices

with an identity matrix I for Qf and Cf and the other with

Qf estimated using Eq. (13) with λ = 0.2 and Cf with

Eq. (25). Performance was evaluated for each frame by com-

puting likelhood at each of 26 evenly spaced points along the

dotted line in Fig. 1. The estimate was considered correct

if the ML estimate occured at the actual location. The %

accuracy over all frames is summerized in Tables 1 and 2.

We observe that the Laplacian model performs consis-

tently better than the Gaussian model. In the Gaussian case

we find that for 6 dB SNR, setting Qf = I gives better result

than using the estimate of Eq. (13). In the Laplacian case we

find that Cf = I performs better than the estimate of Eq. (25)

across all SNRs.

5. CONCLUSION

In this paper, we proposed a multivariate complex Laplacian

pdf for the ML-SSL and demonstrated that it outperforms the

ML-SSL with the Gaussian distribution assumption. We also

discovered that for low SNR, an identity covariance matrix

gives better performance than its estimation, which indicates

that its estimate becomes less accurate for low SNRs. It is im-

portant to note that the internal covariance matrix estimation

for the proposed multivariate complex Laplacian pdf is cru-

cial for its performance and needs to be further investigated.
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