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ABSTRACT

Advances in hardware technology pave the way to small, low
power wireless sensor devices, such as wireless microphones.
This makes it possible to use a large number, i.e. tens to hun-
dreds, of microphones at positions where it is not feasible to
put wired microphones, creating an enormous potential for
improved flexibility and performance within the transparent
audio communication context. In order to reduce battery con-
sumption, each of the wireless microphones has to be sam-
pled much below the Nyquist sample rate. In this paper we
will study one of the main basic problems of this new sce-
nario. We will show how we are able to reconstruct a signal
at Nyquist rate by using K spatially different Undersampled
Wireless Acoustic Sensor signals.

Index Terms— Wireless acoustic sensors, Undersam-
pling, Transparent audio communication

1. INTRODUCTION

The basic Undersampled Wireless Acoustic Sensor (UWAS)
scenario that will be studied in this paper is depicted in Fig.
1. The audio signal x, with maximum frequency fmax =
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Fig. 1. Basic UWAS scenario.

1/2πT0 [Hz], arrives via K different acoustic transfer func-

tions Hk (k = 0, 1, · · · ,K − 1) at K different wireless mi-
crophones. The input signal of each of these wireless micro-
phones is first filtered by an analog prefilter F with cut-off
frequency |fc| < fmax. The power consumption of each of
the wireless microphones is limited by using a sample rate
fs = (1/K) · fc, which is roughly a factor K below the
Nyquist rate. The (aliased) signal samples are transmitted to
a host computer. In the host computer K of these (aliased)
UWAS signal samples are used to make a reconstruction x̂ of
the original signal x. In this paper we assume ideal circum-
stances, i.e. the wireless transmission is ideal, all K acoustic
transfer functions are different etc.

In a mathematical sense a similar problem has been for-
mulated already in 1977 by Papoulis [1]. Papoulis inge-
niously showed that if a band-limited signal x is processed by
K ’independent’ linear filters Hk, the signal x can be recon-
structed from samples of these filtered versions at a sample
rate which is a factor K below the Nyquist rate. Papoulis
however did not show how the reconstruction could be real-
ized in an efficient practical system. An important aspect of
the mathematical proof in [1] is the invertability of a K ×K
filter matrix H that is filled with K different subversions of
each of the K filters Hk. In [2] it is shown that in general
the reconstruction is impossible if the filter matrix H is sin-
gular for some frequency. It can be shown that, even if all
K acoustic transfer functions Hk are different, the matrix H
becomes singular for DC, which makes the reconstruction
impossible. In the current paper we will use this result to
introduce an extra modulation/ demodulation step in order
to obtain a realizable reconstruction scheme for the UWAS
scenario.

We will make our further derivation completely in the
discrete-time domain. For this we need a discrete-time model
of our basic UWAS scenario, which is depicted in Fig. 2. In
this figure we used Ts = K · T0. The frequency response of
each of the acoustic transfer functions is given by the peri-
odic function Hk(ejθ), where θ = 2πf · T0 is the normalized
discrete-time frequency with period 2π.



A/D

1/T0

X(ejθ)
↓ K

H1(e
jθ) ↓ K

↓ K

Y0(e
jθ)

HK−1(e
jθ)

x[nT0] y0[nTs]

Y1(e
jθ)

y1[nTs]

YK−1(e
jθ)

yK−1[nTs]

H0(e
jθ)

Fig. 2. Discrete-time model of basic UWAS scenario.

2. IMPORTANT POINT OF ATTENTION

Using the standard expression (see e.g. [3]) for the fac-
tor K downsamplers we can derive from Fig. 2 for k =
0, 1, · · · ,K − 1 the following set of equations:

Yk(ejθ) =
1
K

K−1∑
p=0

Hk(ejθ/KW−p
K ) ·X(ejθ/KW−p

K ) (1)

with the twiddle factor WK = e−j 2π
K . This set of equations

can be put into vector-matrix notation, in which a filter ma-
trix H contains K2 of the downsampled and scaled filters
Hk(ejθ/KW−p

K ) for k, p = 0, 1, · · · ,K − 1.
In the UWAS scenario the analog prefilters F are designed

in such a way that the discrete-time versions of the acoustic
transfer functions will have the property: Hk(ejθ)||θ|=π = 0.
It can be shown that for even values of K this results in the
fact that one of the columns of the filter matrix H contains all
zeros for DC which makes the reconstruction, according the
result of [2], impossible.

3. ONE BRANCH OF DISCRETE-TIME MODEL

In order to make our further derivation, we will focus in this
section on one branch k and skip this index k in first instance.
In order to cope with the point of attention, as described in the
previous section, we will introduce in this section an alterna-
tive model in such a way that the elements in the filter matrix
H will not result in one column that contains only zero el-
ements for DC. Furthermore we assume that all K acoustic
transfer functions are different.

Our alternative model is sketched in Fig. 3. In the upper
part of this figure we have applied a modulation operator to
the input signal. 1 The result is that the frequency response of

1For simplicity reasons we choose the index m for the modulation fre-
quency θm = m · π equal to m = K−1

K
while any non integer number is

allowed.
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Fig. 3. Alternative model of one branch of basic scenario.

the input signal is shifted over over K−1
K π [rad]. This modu-

lation operator is followed by a demodulation operator, which
shifts the frequency response of the input signal over the same
amount in the opposite direction. In the lower part of this fig-
ure, the demodulation operator is first moved over the filter
H(ejθ), resulting in a shifted filter:

Hs(ejθ) = H(ejθ ·W
K−1

2
K ) (2)

Finally the demodulation operator is moved over the down-
sampling operator ↓ K which results in the following simple
demodulation operator: e−j(K−1)πn = (−1)(K−1)·n. Fur-
thermore, by using the standard modulation and demodula-
tion operators [4], we note that:

Xs(ejθ) = X(ejθ ·W
K−1

2
K ) (3)

Using the standard expression ([3]) for the factor K down-
sampler we can derive the following set of equation in the
frequency domain:

Ys(ejθ) =
1
K

K−1
2∑

q=−K−1
2

H(ejθ/KW−q
K ) ·X(ejθ/KW−q

K ). (4)

while the frequency response of the output is obtained by:

Y (ejθ) = Ys(ejθ · ej(K−1)π). (5)

We note that the running index q of the summation in equation
(4) is defined by:

q = −K − 1
2

: 1 :
K − 1

2
(6)

and thus q needs not to be an integer.

4. FREQUENCY DOMAIN EXPRESSION UWAS
SCENARIO

Now we can use expression (4) for each branch k = 0, · · · ,K−
1 of our basic UWAS scenario as depicted in Fig. 2. Combin-
ing this set of equations results in the following vector-matrix
expression:

Ys(e
jθ) =

1
K
·H(ejθ/K) ·X(ejθ/K) (7)



with:

X(ejθ/K) =
(
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K−1
2
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K )

)t
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(
H0(e
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)t
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K ), · · · ,Hk(ejθ/KW
−K−1

2
K )

)t

Ys(e
jθ) =

(
Ys,0(ejθ), · · · , Ys,K−1(ejθ)

)t

(8)

In this equation we used underlined boldface characters for
vectors and boldface characters for matrices, while (·)t de-
notes the transpose of a vector. Finally we have to apply a
demodulation operator to each of the K branches, which is
expressed in the following vector:

Y(ejθ) =
(
Ys,0(ejθ · ej(K−1)π), · · · , Ys,K−1(ejθ · ej(K−1)π)

)t

(9)
The result of the modulation operator is such that the filter
matrix H(ejθ/K) is constructed in such a way that we will
not meet the main problem that has been described in section
2. The filter matrix H(ejθ/K) of equation (8) is nonsingular,
which is the case if all acoustic transfer functions Hk(ejθ) are
different.

5. RECONSTRUCTION STRUCTURE

The first step of the reconstruction can be achieved by taking
the inverse of equation (7), which results in:

1
K
·X(ejθ/K) = G(ejθ/K) ·Ys(e

jθ) (10)

with
G(ejθ/K) = H−1(ejθ/K) (11)

From this point onwards we can use the efficient realization
of the synthesis part of a DFT modulated filterbank (see e.g.
[3]) to reconstruct the original X(ejθ) from the K frequency
bands in the vector X(ejθ/K). This efficient reconstruction
structure is depicted in Fig. 4. Note that we used a ’shifted’
DFT matrix Fs that is defined as:

Fs =
(
W0

K , · · · ,WK−1
K

)t

(12)

Wl
K =

(
W
−K−1

2 ·l
K , · · · , W

K−1
2 ·l

K

)t

.

Efficiency is achieved by implementing the prototype filter
that is used for the synthesis part of the DFT modulated fil-
terbank as polyphase filters in each of the K branches. If
furthermore the prototype filter is assumed to be an ideal low
pass filter with cut-off frequency π/K the prototype filters re-
duce to a fractional delays. This is represented in the diagonal
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Fig. 4. Reconstruction structure basic UWAS scenario.

fractional delay matrix D(ejθ/K) which, in the ideal case, is
defined as:

D(ejθ/K) = diag
{

e−j0·θ/K , · · · , e−j(K−1)·θ/K
}

. (13)

Finally it we used the symbol ejθ) to represent a (non-causal)
delay, in this case of T0 sec.

6. EXAMPLE: ACOUSTIC DELAYS

In this section we will verify the results of the previous sec-
tion by using acoustic transfer functions that represent pure
acoustic delays 2 , thus Hk(ejθ) = e−jτkθ. For simplicity
reasons we assume the first delay equal to zero, thus τ0 = 0.
Note furthermore that the delays τk need not to be integer val-
ued. For this case we can split the filter matrix H(ejθ/K) of
equation (8) as follows:

H(ejθ/K) = ∆(ejθ/K) ·W (14)

with3:

W =
(
Wτ0

K , · · · ,WτK−1
K

)t

Wτk

K =
(
W
−K−1

2 ·τk

K , · · · ,W
K−1

2 ·τk

K

)t

∆(ejθ/K) = diag
{

e−jτ0θ/K , · · · , e−jτK−1θ/K
}

(15)

Now the reconstruction structure simplifies to the one that is
depicted in Fig. 5. The first step of this scheme is the modu-
lation of the incoming signals. In order to further process the
K parallel signals, a proper time alignment is needed which
is taken care of by the inverse of the diagonal filter matrix
∆(ejθ/K). Each of the resulting signals contains a mixture
of K uniform filterbands of the input signal vector X(ejθ/K).
This mixture is de-mixed by the inverse of matrix W. From

2The samples yk[nTs] can be regarded as a recurrent non-uniform sam-
pling process [5]: a combination of K mutual delayed sequences of uniform
discrete-time signal samples taken at one Kth of the Nyquist sampling rate.

3W is a nonuniform equivalent of Fs of equation(12)
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Fig. 5. Reconstruction structure for acoustic delays.

this point onwards the structure is equivalent to the synthesis
part of an efficient DFT modulated uniform filterbank.

Finally we note here that for the case that the delays are
successive integer values, thus τk = k, the values of the sig-
nals y[kTs] represent K successive uniform samples of the
original process x[nT0]. For this, uniform sampling, case we
have W · F−1

s = I, with I the identity matrix. Furthermore
when using an ideal prototype filter for the synthesis part, we
also have ∆(ejθ/K) ·D−1(ejθ/K) = I. Thus for this specific,
uniform sampling, case the whole reconstruction structure of
Fig. 5 reduces, as expected, to a time-interleaved structure
which consists of a set of K parallel up-samplers and (non-
causal) delays.

7. SIMULATION RESULT

In order to verify the results we implemented a (causal) Mat-
lab programme of the ideal (non-causal) structure as depicted
in Fig. 5 and compared the original input signal x with the
reconstructed signal x̂. In our simulations the acoustic de-
lays have been simulated by fractional delays with a resolu-
tion of 1/L = 1/20 = 0.05. The length of the resulting
fractional delay FIR filters was Lp = 74 coefficients. Fur-
thermore we used K = 4, T0 = 1 and the input signal sam-
ples are generated as x[n] = sin(0.1π · n) + 2 sin(0.75π · n).
We have run a simulation with 2048 signal samples and the
acoustic delays where chosen as: τ0 = 0; τ1 = 0.5; τ2 =
0.95 and τ3 = 3.55 The simulation results are depicted in
Fig. 6. The figure shows two reconstruction options: 1)
”Reconstruct” (solid line), which is the structure of Fig. 5
and 2) ”Time interleave” (dotted line), which simply time-
interleaves the signal samples yk[nTs]. The left-hand side
of Fig. 6 shows the amplitude characteristic 20log(|X̂(ejθ)|)
[dB] and the right-hand side shows the phase characteristic
Φ{X̂(ejθ)} [rad] of the reconstructed signal samples x̂[n],
both as a function of the frequency θ with −π ≤ θ < π.
To construct the plots we used one fragment of 512 samples
of x̂[n] and applied an FFT of length 512 to these (unwin-
dowed) data samples. From this result we can clearly see that
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Fig. 6. Simulation results for acoustic delays.

the structure of Fig. 5 indeed works, while the (simple) time-
interleaving approach introduces many undesired frequency
peaks. Finally we compared for our ”Reconstruct” approach
the samples of the chosen fragment with the corresponding
original signal samples of x[n] and calculated the following
error: ε = 1

512

∑
n∈fragment |x[n]− x̂[n]| = 8.91 · 10−4.

8. CONCLUSIONS

We do believe that many new array processing algorithms
have to be developed in the Undersampled Wireless Acous-
tic Sensor (UWAS) sampling scenario. Such algorithms have
to account for dynamic array configuration, synchronisation
between the devices, and distributed and collaborative pro-
cessing aimed at meeting power and complexity constraints.

In this paper we studied one of the main basic problems
in such an UWAS sampling scenario. We have shown how
to reconstruct a signal at Nyquist rate by using K spatially
different UWAS signals. Or stated in another way, we have
shown how to reconstruct temporal data from spatial data.
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