
CHALLENGES AND SOLUTIONS FOR DESIGNING SOFTWARE AEC ON

PERSONAL COMPUTERS

Qin Li, Chao He and Wei-Ge Chen

{qinli, chaohe, wchen}@microsoft.com

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052

ABSTRACT

In this paper, we present some unique challenges of

designing a robust and practical acoustic echo canceller

(AEC) for personal computers (PC) and propose effective

algorithms that meet these challenges. Specifically, the

quality and robustness of our AEC is enhanced by

selectively applying a glitch recovery process based on a

novel feature that measures the quality of the alignment

between the microphone and loudspeaker signals. In

addition, a multi-step clock drifting compensation method is

applied to improve the quality of AEC in case of clock

drifting. The effectiveness of the algorithms is demonstrated

by a real-time AEC component running in a variety of

operating environments.

Index Terms— acoustic echo cancellation/canceller,

software, clocking drifting, AEC, PC, VOIP

1. INTRODUCTION

Acoustic Echo Cancellation (AEC) is a digital signal

processing technology which aims to remove the acoustic

echo from a speaker phone in two-way or multi-way

communication systems [1]. During the recent decade, the

explosive growth of voice over IP (VOIP) applications calls

for robust and reliable AEC running in software on a variety

of PC operating systems. Although there has been extensive

research on AEC and significant advances have been made,

to date little effort has been paid to the unique software

design challenges encountered on the PC platforms except

for a few exceptions [2]-[4] where signal synchronization

were briefly discussed.

Figure 1 illustrates an example of one end of a typical

VOIP application on a PC, which includes an audio capture

path and an audio render path in two directions. In the

capture path, an analog to digital (A/D) converter converts

the analog audio signal captured by microphone to digital

samples continuously at a sampling rate
smF . The digital

audio samples are saved in a capture buffer sample by

sample and are retrieved in frame increments (denoted

as][im). Finally, samples in][im are processed and

transmitted. In the render path, a similar process occurs

involving discrete time signal][is , the continuous time

signal][ts , at a sampling rate
ssF .

Figure 1. Hands-free VOIP configuration.

The capture and render buffers are necessary for practical

purposes but they do introduces delay. For example, a

sample generated by the A/D converter will stay in capture

buffer for a short while before it is read out.

Typically, AEC assumes the room can be modeled as a

finite duration linear plant. The echo e(t) is represented per

the following relationship

∫ −⋅=∗=
eT

dtshthtste
0

)()()()()(τττ (1)

where * denotes convolution, h(t) the room response, Te the

length of the room response filter, and s(t) the loudspeaker

signal. We assume our AEC uses a typical architecture,

where adaptive filters, such as Normalized Least Mean

Square (NLMS) adaptive filters [1], operate in the discrete

Fourier transform (DFT) subbands to adaptively model the

time-varying room response (see, e.g. [1]).

In the literature it is commonly assumed that the

discrete-time version of Equation (1) holds. However, due to

the imperfection of the PC platform, e.g. the imprecision of

the A/D and D/A and the limitations of the system software

components,][nm and][ns are far from ideally digitized

versions of m(t) and s(t). If one does not take these factors

into consideration, serious breakdown of AEC can happen,

resulting in poor quality. In this paper, we consider these

problems explicitly and demonstrate algorithms that can

effectively alleviate these system “artifacts.”

2. SIGNAL ALIGNMENT ISSUES

Figure 2 shows the prediction timeline for both continuous

and discrete time signals with the underlying assumption

that s[t] and m[t] are sampled at a consistent sampling rate

and synchronized. To fully illustrate the point of

consistency, we introduce the concept of the “relative

sample offset” (RSO, d[i]). Conceptually, the RSO can be

understood as follows:

1. Given a discrete-time microphone sample m[i], suppose

we can find the physical time τ when m[i] was

generated by the A/D converter (Figure 1).

2. According to Equation (1) and Figure 2, the echo at

m(τ) is a function of the loudspeaker signal s(t) during

the time interval t = [τ-Te,τ] preceding time τ.

3. Next, let’s assume that we find the index j of

loudspeaker signal such that s[j] is played back at time τ

at the loudspeaker.
t

tt-Te

echo

m(t)

s(t)

m[n]

s[n]

i

i-TeFss-d[i]

echo

i-d[i]

Figure 2. Time-line of prediction.

In other words, we identify a loudspeaker sample s[j]

that is rendered at the same time as the microphone sample

m[i] is captured. We define the RSO as the difference of the

indices, or d[i]=i-j. When the precise sampling rates
smF and

ssF are known, d[i] should be an exact linear function of i,

or j:

CFFFiid smsssm +−= /)(][(2)

where C is an arbitrary constant depending on the starting

point of the two sampling clocks. Under the ideal condition,

we can always make
smF and

ssF identical through re-

sampling, in which case d[i] reduces to a constant and m[i]

and s[i] are said to be in “alignment”. In reality, however,

such is rarely the case due to at least one of the following

manifestations that we have encountered during our

investigations:

(1) Clock drifting: The microphone signal m[i] and

loudspeaker signal s[i] generally are sampled by two

different sampling clocks. The actual clock frequencies

are usually slightly different and unknown even though

their nominal frequencies are known to be the same. If

the nominal frequency is used as is, m[i] and s[i] will

eventually lose “alignment” over time. This

phenomenon is commonly referred to as clock drifting.

(2) Time-varying delay: As mentioned earlier, buffering

introduces a delay in both capturing and playback paths.

The delay is unfortunately not constant over time.

(3) Noisy timing measurements: Modern audio hardware

provides timing data in order to synchronize m[i] and

s[i]. The information is always noisy, due to limited

numerical precision, data transfer delay, multi-

threading, etc.

(4) Missing samples/Glitch: The system may unpredictably

lose some samples, typically referred to as a “glitch”.

After a glitch, m[i] and s[i] will no longer be in

alignment, even if they have been prior to that event.

Considering these factors, we propose a modification of

Equation (2) as a model for the RSO:

CiwieRiid +++=][][][(3)

where e[i] is zero-mean WGN with variance σ
2
 to model the

noisy timestamps, w[i] is a sparse (i.e. w[i] = constant in

most places) and random step function representing the

discontinuities caused by the glitches, and R, typically a

very small value, is the clock drifting rate. Note that the

RSO can be any rational number, instead of integers only.

It is clear to us now that unless compensated, the

variability of RSO will break the basic linear prediction

model that AEC relies on and often cause AEC to fail

completely. Next, we will be introducing techniques that

compensate the non-ideal RSO, seek to bring m[i] and s[i]

into alignment and consequently improve the quality and the

robustness of AEC substantially.

3. GLITCH DETECTION AND RECOVERTY

To handle glitches, our objectives are to detect where the

glitches happen, bring signals into alignment and take

necessary steps to recover quickly. In order to achieve these

goals, we first need to estimate the parameters that

characterize the RSO, i.e., clock drifting rate R and the

variance of the observation noise σ
2
.

3.1 Parameter estimation

Generally speaking, estimating the parameters of Equation

(3) jointly is a very hard problem. However, due to the

sparseness of w[i], we propose a simplified, suboptimal

solution that takes place in two steps. In the first step, we

assume the local observation window doesn’t contain any

glitches. With w[i] out of the picture and given N number of

frames, we can estimate R and σ
2
 by means of the formal

equations:

)/(

)/(

NSSS

NSSS
R

dddd

diid

−

−
=

∧
,

NSRNSC id //
∧∧

−= ,
22

2
/)222(

∧∧∧∧∧∧∧

++−+−= CNSRCSCSRSSRS idiididdσ

where ∑
=

=
N

i

i
iS

1

, ∑
=

=
N

i

d
idS

1

][
, ∑

=

=
N

i

ii
iS

1

2 ,

2

1

][∑
=

=
N

i

dd idS , and ∑
=

⋅=
N

i

id idiS
1

][
. As these

estimates are optimal in terms of the mean squared error,

they should approach their true values, as N increases.

However, in practice, it is not a good idea to let N increase

unbounded. The clock drifting rate R may be slowly varying

over time and observation noise may not be strictly

stationary. Thus, we define an estimation window of several

hundred seconds long and for simplicity reset the estimates

at the end of the window. Practical experience shows that
∧

R

and
∧

2σ usually converges in several seconds. Furthermore,

standard recursive least square formulations can be chosen

for online estimation of these parameters, in which case the

explicit windowing is no longer needed.

3.2 Glitch Detection

Based on our observations, glitches can be classified into

two categories by the amount of time discontinuity the

glitch introduces. To this end, we choose a threshold several

times of
∧

σ , the standard deviation of the RSO noise. Any

discontinuity larger than the threshold is detected as a

“large” glitch. Note that once a large glitch is detected, the

adjacent RSO data will be discarded from parameter

estimation. Although this doesn’t change the fact that the

steps described in Section 3.1 is suboptimal, our

experiments show the remaining small glitches don’t cause

any serious problem.

Small glitches present a challenge as the glitch size is

indistinguishable from the range of RSO noise. We propose

to apply a Move-Average (MA) filter to the RSO data][id :

∑
−

=

−=
1

0

][
1

][
L

l

MA lid
L

id

where L denotes the window size and is made proportional

to
∧

2σ in order to adapt to different noise conditions. If][idMA

has a change larger than a predefined threshold within a

certain time period, a small glitch is identified.

To further enhance the glitch detection process, we

make the detection adaptive to
∧

2σ in three zones. First, when
∧

2σ is low, our AEC applies both large and small glitch

detection. Secondly, when
∧

2σ is within a medium range,

we cease the process of small glitch detection, while

continuing the process for large glitch detection. Finally,

when
∧

2σ is too high, our AEC ceases to perform both large

and small glitch detection processes.

3.3 Fast Glitch Recovery

After a glitch is detected, the AEC needs to re-align the two

streams m[i] and s[i]. The exact mechanism of re-alignment

will be covered in Section 4. In addition, our AEC stops

updating the adaptive filter coefficients for all samples

involved in the re-alignment until all samples involved are

passed. We found this approach vastly improve AEC quality

compared to the other two obvious choices: If the adaptive

filter coefficients are reset, the AEC would take time to

converge during which echo would likely be heard. On the

other hand, if the coefficients are updated continuously, the

adaptive filters could lose convergence due to the mis-

aligned signals.

4. CLOCK DRIFTING COMPENSATION

As mentioned earlier, when there is either clock drifting

(CD) or a glitch, we need to compensate the time

discontinuity and bring the microphone and loudspeaker

signals into alignment again. Here, we propose a novel

method for effective CD compensation.

4.1 Frequency Domain Multi-Step CD Compensation

In common practice, the AEC adjusts one of the stream

buffers by one sample when the accumulative clock drifting

is greater than one sample. The nature of adjustment

dictates that the upper limit of the alignment accuracy is one

sample. Suppose x[n] is one of the streams and X[k] is its

DFT. In case the stream is adjusted by one sample delay,

i.e., x’[n]=x[n-1], the spectrum of the adjusted signal is

given by KkjekXkX /2][][' π−= where K is the DFT size,

and Kkje /2π− is the phase change due to the one-sample

delay. The phase variability is sudden and significant at high

frequencies, causing filter divergence and consequently

noticeable quality degradation.

We propose that the CD compensation should be

applied similarly to how CD occurs, i.e., the compensation

should be applied gradually and continuously with time. The

phase changes should be small (fractional sample) and

graduate enough so that the subband adaptive filters are able

to catch up easily without quality degradation. We called

this method multi-step CD compensation, in contrast to uni-

step CD compensation where the minimal adjustment is

always one sample.

However, instead of performing fractional sample delay

in time which can be computationally expensive, we take

advantage of the frequency domain that the AEC operates

in. Specifically, for the case of P sample delay, we spread P

evenly across M consecutive frames by performing:
KkSjekXkX /2][]['' π−⋅= which approximates the fractional

sample delay in time domain][]['' Snxnx −= where

M
PS = is referred to as the step size. Due to the circular

shift property of the DFT, the approximation is only valid

when P << K. When P accumulates to a certain level, we

reduce the burden on the frequency domain method by

offloading a convenient portion of P to an equivalent time

domain operation so that P remains small. Although it is

rare, when the CD rate is larger or close to 1 sample per

frame, this offloading process will happen frequently

enough to cause a stability problem. In this case, we instead

use a time domain re-sampler to handle the higher CD more

effectively.

4.2 Adaptive Step Size Determination

Ideally, to precisely compensate for the CD, the step size

should match the CD rate, i.e. IRFS s= , where R is the CD

rate, Fs the sampling rate and I the frame size. However, in

practice since R and Fs are unknown and may be time

varying, we use the following mechanism to determine the

step size adaptively.

We let
jj PS ρ= at the j

 th
 frame where ρ is a constant

set empirically to ensure stability and quick convergence,

and Pj , a rational number, is accumulated based on
∧

R . At

each data frame where ρ>jP , a phase compensation of

Kkj je
/2 φπ−

will be applied, where ∑ =
=

j

l lj S
0

φ . As time

goes on, when φ
j
crosses a predetermined threshold Q, we

perform an equivalent Q sample shift in time. Pj and φ
j

 ,

then, will be updated as follows: Pj = Pj – Q and

Qjj −= φφ .

5. RESULTS

We have integrated the algorithms presented above to our

software AEC system and obtained the following positive

results. Our software AEC runs robustly on various

operating systems under diverse operating conditions. The

average computation load is about 50 MIPS.

Figure 3 shows an example of small and large glitches

in the RSO. The raw RSO is shown as the blue trace, while

the output of the MA filter is shown in red. For

convenience, the sample numbers and frame number are

converted into physical time. In this example, the estimated

clocking drifting rate
∧

R is 0.0002, and the estimated variance

of RSO
∧

2σ is 0.083 (ms
2
). At 8 second, there is a big glitch

with size of 5.3 ms, which is detected immediately. At 12

second, there is a small glitch of 0.5 ms, which is about the

same amount as the maximum of RSO error. Despite the

challenge, the small glitch is successfully identified after

about 1 second.

An example of the multi-step CR compensation is

shown in Figure 4. The original data shown in the figure is

sampled at 16 kHz with a CR rate of 1.7x10
-4

, which needs

one-sample adjustment for every 0.37 seconds. The blue

line shows the AEC output using the uni-step compensation

method where there are three adjustments at 3.08, 3.45, and

3.82 second, respectively. The red line shows the AEC

output using the multi-step CR compensation. The multi-

step method has clearly better quality and yields much

smoother output with very low echo level, while with the

uni-step method the residue echo level rises after the

adjustment and the degradation (echo leak) lasts about 50-

100 ms. In terms of Echo Return Loss Enhancement, we

observe about 6-7 dB local improvement, and about 2 dB

average improvement. In this example, the step size was

adapted automatically between 0.02 and 0.03. The long term

average of the step size matches the actual CD rate when the

sampling rate Fs and frame size I are factored in.

Figure 3. Glitch Detection

Figure 4. Uni-step vs. multi-step compensation.

6. CONCLUSIONS

In this paper, we have considered several unique

challenges that adversely affect the quality of software AEC

running on a PC. Effective solutions are proposed and

demonstrated. Our AEC implementation, while significantly

improved, is still far from perfect. Future work and further

improvements are definitely recommended.

7. REFERENCES

[1] S. L. Gay and J. Benesty, Acoustic Signal Processing for

Telecommunication, Kluwer Academic Publishers, 2001.

[2] V. Fischer, T. Gänsler, E.J. Diethorn, J. Benesty, “A software

stereo acoustic echo canceller for Microsoft Windows”, in

Proc. IWAENC, 2001, pp. 87-90.

[3] T. Gänsler, V. Fischer, E. J. Diethorn, and Jacob Benesty,

"The WinEC: A Real-Time Hands-Free Stereo

Communication System," in Audio Signal Processing for

Next-Generation Multimedia Communication Systems, pp.

171-193, Springer, 2004.

[4] J. W. Stokes and H. S. Malvar, “Acoustic Echo Cancellation

with Arbitrary Playback Sampling Rate”, in Proc ICASSP,

2004, pp. 153 -156.

