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ABSTRACT

A new method for single channel speech enhancement is presented

which relies on a Kalman filter structure. The proposed scheme uses

a two step approach. In the first step, temporal correlation of suc-

cessive speech and noise magnitudes is exploited. Therefore, the

current samples are propagated in time based on information taken

from previous, enhanced samples. The resulting prediction errors

are estimated in a second step by utilizing different statistical esti-

mators. The performance of the proposed method is shown to be

considerably better than purely statistical estimators which do not

take into account temporal correlation.

Index Terms— Speech enhancement, Kalman filter, linear pre-

diction, noise suppression

1. INTRODUCTION

Speech quality and intelligibility may significantly deteriorate in the

presence of background noise, e.g., engine noise or street noise. The

problem of enhancing speech that is degraded by additive noise has

been widely studied in the past and is still an active field of research.

Speech enhancement has many applications in voice communica-

tions, speech recognition and hearing aids.

The design of many speech enhancement systems is based on

modeling the noisy input coefficients in the short-time Fourier trans-

form (STFT) domain to derive individual adaptive gains for each

frequency bin. Most of the rules proposed in literature have been

derived under certain assumptions about the statistics of the speech

and noise signal. Considering a Gaussian speech and noise model,

this enables to deduce minimum mean-squared error (MMSE) esti-

mators, such as the well-known Wiener filter [1] or the short-term

spectral amplitude (STSA) estimator [2]. Martin [3] proposed the

use of a Gamma speech model and derived an MMSE estimator for

the complex speech coefficients under the assumption of Gaussian

and Laplacian noise models. Lotter [4] derived a maximum a poste-

riori (MAP) estimator using a super-Gaussian speech and Gaussian

noise model. All of these estimators only utilize the statistical char-

acteristics of speech and noise, correlation in time is explicitly not

taken into account (except for smoothing purposes in [2]).

Paliwal and Basu [5] were the first to propose the use of a Kalman

filter for the purpose of speech enhancement. In order to reduce

complexity, Wu and Chen [6] derived a Kalman filtering system in

the sub-band domain. Puder [7] further investigated the application

of a Kalman filter in sub-bands and increased the performance com-

pared to the full-band time domain approach. In addition to the ex-

ploitation of intra-frame correlation, model-based approaches that
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consider the correlation of successive speech frames can be found,

e.g., in [8] and [9].

In this paper, the Kalman filter approach of [9] is improved. In-

stead of using a complex predictor to exploit the temporal correlation

of successive spectral coefficients, only the real-valued magnitudes

are propagated in time. Furthermore, the propagation step is not only

applied to the speech signal, but also extended to the noise signal.

The resulting prediction errors are estimated in a second step by uti-

lizing different statistical estimators. The remainder of this paper is

organized as follows: In Sec. 2, a brief overview about the proposed

system is given. Secs. 3 and 4 comprise the procedure of propaga-

tion and update step in detail. Experimental results are shown in Sec.

5 and conclusions are drawn in Sec. 6.

2. SYSTEM OVERVIEW

A simplified block diagram of the proposed system is depicted in

Fig. 1. It is assumed that the noisy input signal y(k) consists of

the clean speech signal s(k) which is degraded by an additive noise

signal n(k) according to:

y(k) = s(k) + n(k), (1)

where k is the discrete time index. To decompose the speech and

noise signal, the noisy signal is transformed into the frequency do-

main. Therefore, y(k) is segmented into overlapping frames of length

LF. After windowing and zero-padding, the fast Fourier transform

(FFT) is applied to these frames. Hence, the spectral coefficient of

the noisy input signal at frequency bin µ and frame λ is given by:

Y (λ, µ) = S(λ, µ) + N(λ, µ) (2)

= R(λ, µ)e
jϑ(λ,µ)

(3)

= A(λ, µ)e
jα(λ,µ) + B(λ,µ)e

jβ(λ,µ), (4)

where S(λ, µ) and N(λ, µ) represent the spectral coefficients of

speech and noise. Moreover, R(λ,µ), A(λ, µ) and B(λ, µ) denote

the magnitudes of the noisy, the speech, and the noise signal and

ϑ(λ,µ), α(λ, µ), β(λ, µ) are the corresponding phases.

The investigated system is based on a Kalman filter structure

that consists of two steps, namely propagation and update step. In

the propagation step, temporal correlation (a priori information of

higher order) of successive frames is exploited. In contrast to [9], the

Kalman filter is not applied to the complex signal Y (λ,µ) but only

to the noisy magnitude R(λ, µ). This is motivated by the fact that

most part of the temporal correlation of the spectral coefficients can

be found in successive magnitudes and only marginally in the phase

samples. In addition, the propagation step is extended to the noise

signal in order to additionally take into account correlated noise sig-

nals. Hence, the current speech and noise magnitudes are predicted
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Fig. 1. System block diagram

based on information taken from previous, enhanced samples. Based

on the spectral subtraction method that is used here (cf. Sec. 3.2),

the resulting estimates Âprop(λ, µ) and B̂prop(λ, µ) are combined to

get an estimation of the current noisy magnitude:

R̂prop(λ,µ) = Âprop(λ, µ) + B̂prop(λ, µ). (5)

In general, the prediction in the propagation step is erroneous and

the prediction errors

ÊA(λ, µ) = A(λ,µ) − Âprop(λ, µ) and (6)

ÊB(λ, µ) = B(λ,µ) − B̂prop(λ, µ) (7)

occur for the speech and noise magnitudes. Considering the differ-

ential signal

D(λ, µ) = R(λ,µ) − R̂prop(λ, µ), (8)

the update step estimates these prediction errors based on a conven-

tional statistical estimator, utilizing a priori information of zeroth

order. This estimator is adapted to the statistics of speech and noise

and performs a spectral weighting of the differential signal by mul-

tiplying the Kalman gain K(λ, µ):

ÊA(λ, µ) = K(λ, µ)D(λ, µ) (9)

ÊB(λ, µ) = (1 − K(λ, µ))D(λ, µ). (10)

To obtain the enhanced speech and noise magnitudes Âup(λ,µ) and

B̂up(λ,µ), the initial predictions of the propagation step are updated:

Âup(λ, µ) = Âprop(λ, µ) + ÊA(λ, µ) (11)

B̂up(λ, µ) = B̂prop(λ, µ) + ÊB(λ, µ). (12)

The estimated clean speech magnitude Âup(λ, µ) is recombined with

the noisy input phase:

Ŝup(λ, µ) = Âup(λ, µ)e
jϑ(λ,µ), (13)

before an inverse fast Fourier transform (IFFT) and the overlap-add

method are applied.

3. PROPAGATION STEP

In this section, further details about the propagation step are given.

The magnitudes A(λ, µ) and B(λ,µ) of the speech and the noise

signal are both modeled as two independent autoregressive (AR)

processes. While in [9], the speech phase was implicitly estimated

within the complex linear prediction, an additional phase estimation

term is not necessary here.

3.1. Magnitude Estimation

Within the modified Kalman filter, the AR model is used to exploit

temporal correlation of the speech and noise magnitudes. In [9], a

complex AR model was used to directly predict the spectral coef-

ficient Ŝprop(λ,µ). As there is almost no correlation in successive

phase samples, linear prediction is explicitly applied to the speech

and noise magnitudes in order to exploit the maximum temporal cor-

relation within adjacent magnitudes.

The magnitude estimates Âprop(λ,µ) and B̂prop(λ, µ) for speech

and noise can be stated as:

Âprop(λ,µ) =

NKX

i=1

âi(λ, µ)Âup(λ − i, µ) and (14)

B̂prop(λ,µ) =

MKX

i=1

b̂i(λ, µ)B̂up(λ − i, µ), (15)

where NK and MK represent the orders of the speech and the noise

model respectively. The AR coefficients âi(λ,µ) and b̂i(λ, µ) are

estimated in advance by minimizing the energies of the prediction

errors. Therefore, the well-known Levinson-Durbin algorithm is

used [10]. The required autocorrelation vector and matrix are calcu-

lated from the previous LAC enhanced magnitudes of either speech

or noise.

3.2. Phase Estimation

For the calculation of the differential signal D(λ, µ) in Eq. 8, an esti-

mate of the noisy magnitude R(λ, µ) is needed. In general, R(λ,µ)
is given by:

R(λ,µ) =
p

A2(λ,µ) + B2(λ, µ) . . .

. . . +2A(λ,µ)B(λ, µ) cos (α(λ, µ) − β(λ, µ))2. (16)

As the magnitudes A(λ, µ) and B(λ, µ) have already been predicted,

estimates of the phases α(λ, µ) and β(λ, µ) are still required in order

to apply Eq. 16. If the predictions Âprop and B̂prop are of sufficient

accuracy, the range of possible values for the estimation of α(λ, µ)
is limited if |S| > |N |. This can be seen from the example in Fig. 2.

The limit of the maximum phase deviation ϑ(λ,µ) − α(λ, µ) is de-

fined by the case when Y (λ,µ) is perpendicular to N(λ, µ), i.e.,

−arsin
B(λ, µ)

A(λ, µ)
≤ ϑ(λ, µ) − α(λ, µ) ≤ arsin

B(λ, µ)

A(λ, µ)
. (17)
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Fig. 2. Limitation of α(λ, µ) for the case |S| > |N |

It is known that if this phase deviation is below a certain thresh-

old (between π/4 and π/8), nothing is recognized due to psychoa-

coustical properties of the human ear. In [11], it was shown that

no speech degradation is perceived as long as the signal-to-noise

ratio
|S|2

|N|2
is at least 6 dB. Therefore, the noisy input phase ϑ(λ,µ)

is utilized as estimate for α(λ, µ). For the case |N | > |S|, a simi-

lar expression as in Eq. 17 can be derived for the maximum phase

deviation ϑ(λ, µ) − β(λ, µ). Thus, the noisy phase ϑ(λ, µ) is also

applied as estimate for β(λ, µ). Using these phase estimates, the

maximum phase deviation of α(λ, µ) becomes smaller with an in-

creasing SNR and that of β(λ, µ) becomes smaller with a decreasing

SNR. Eq. 16 reduces to the equation of the well-known spectral sub-

traction method [12]. Here, the noisy magnitude is given as the sum

of the STFT of speech and noise magnitude such that R(λ, µ) can

be estimated according to Eq. 5. Hence, the noisy magnitude can

directly be estimated from the estimates Âprop(λ, µ) and B̂prop(λ, µ)
and no additional phase estimation term is necessary.

4. UPDATE STEP

While in the propagation step, the temporal correlation of successive

speech and noise magnitudes is exploited, the update step makes

use of the statistical characteristics of both signals. The objective in

this step is to estimate the prediction errors EA(λ,µ) and EB(λ, µ),

caused in the propagation step. By inserting Eqs. 5, 11 and 12 in

Eq. 8 and using the spectral subtraction method also for R(λ,µ),

it can be shown that the differential signal D(λ, µ) consists of the

speech prediction error EA(λ,µ) that is degraded by the noise pre-

diction error EB(λ,µ):

D(λ, µ) = R(λ,µ) − R̂prop(λ, µ)

= A(λ,µ) − Âprop(λ, µ) + B(λ, µ) − B̂prop(λ, µ)

= EA(λ,µ) + EB(λ, µ). (18)

The estimation problem in the update step reduces to a ‘classical’

noise reduction problem: The target coefficient EA(λ, µ) is assumed

to be degraded by the additive ‘noise’ coefficient EB(λ, µ) to pro-

duce the noisy coefficient D(λ, µ). Thus, a conventional statistical

estimator can be applied which is adapted to the statistics of the pre-

diction errors.

Based on the assumption that the coefficients EA(λ, µ) and

EB(λ, µ) are statistically independent, two estimators are considered

in the following for the update step, namely an MMSE estimator [1]

and a recently published super-Gaussian joint MAP estimator [4].

Both estimators rely on a Gaussian model for the noise signal. In-

deed, even if the initial speech signal s(k) is degraded by a colored

noise n(k), the propagation step has the effect of a prewhitening

filter as it reduces possible temporal correlation. In addition, both

estimators require the a posteriori SNR γ(λ, µ) and the a priori SNR

ξ(λ,µ) which are defined as follows:

γ(λ,µ) =
|D(λ, µ)|2

E{|EB(λ,µ)|2} and ξ(λ, µ) =
E{|EA(λ, µ)|2}
E{|EB(λ,µ)|2} ,

(19)

where E{·} represents the expectation operator. The two estimators

are briefly described in the following:

1. Gaussian MMSE Estimator (Wiener Filter)

This Gaussian MMSE estimator corresponds to the well-

known Wiener filter solution and is derived from the optimal

filter theory [1]. This linear estimator minimizes the mean

square error between clean and enhanced coefficient. Applied

to the update step, the enhanced coefficient ÊA(λ, µ) can be

stated as:

ÊA(λ,µ) =
ξ(λ, µ)

ξ(λ, µ) + 1
| {z }

KG(λ,µ)

D(λ, µ), (20)

Note that this MMSE estimator in the update step equals the

conventional Kalman filter gain as it arises from the same as-

sumption that the prediction errors for speech and noise are

Gaussian distributed [6].

2. Super-Gaussian Joint MAP Estimator

Applied to the update step, this generalized super-Gaussian

estimator [4] uses the following parametric function to ap-

proximate the probability density function (PDF) of the am-

plitude |EA|:

p(|EA|) =
δη+1

Γ(η + 1)

|EA|η
ση+1

EA

exp



−δ
|EA|
σEA

ff

, (21)

where Γ(·) states the Gamma function and σEA
the standard

deviation of the speech prediction error. The parameters δ and

η can be selected in order to obtain the optimal approxima-

tion. Therefore, the Kullback-Leibler distance between mea-

sured and modeled PDF is used [4]. The resulting weighting

rule of this MAP estimator is given by:

ÊA(λ, µ)=

„

u(λ, µ)+

r

u2(λ, µ)+
η

2γ(λ, µ)

«

| {z }

KS(λ,µ)

D(λ, µ),

(22)
where u(λ, µ) = 1

2
− δ

4
√

γ(λ,µ)ξ(λ,µ)
.

Based on the calculation of either KG or KS, the noise prediction

error can be estimated according to Eq. 10.

5. RESULTS

For the evaluation of the proposed noise reduction scheme, five

speech signals from the NTT speech database were degraded by six

different noise types (f16, buccaneer, car, factory1, factory2, white),

taken from the NOISEX-92 database. Among the speech signals,

there were three male and two female speech sequences, each with a

length of 8 seconds. The input SNR was varied between -10 dB and

35 dB (step size: 5 dB). For the analysis and synthesis structure, 75%

overlapping Hann windows with a length of 20 ms and a 256-FFT

(including zero-padding) were used. It turned out that good results

were achieved by the following parameters applied to the modified

Kalman filter: LAC = 6, NK = 3 and MK = 2 (sampling fre-

quency fs=8 kHz). While the power of the noise prediction error

E{|EB(λ,µ)|2} was estimated by using [13], the decision-directed

approach [2] was utilized for the estimation of the a priori SNR.
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6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

 

 

6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

 

 

Update Step: Gaussian MMSE

Update Step: Super-Gaussian JMAP

Noise Attenuation [dB]

Noise Attenuation [dB]

S
eg

.
S

p
ee

ch
S

N
R

[d
B

]
S

eg
.

S
p
ee

ch
S

N
R

[d
B

]

Wiener filter

Kalman filter S

Kalman filter S

Kalman filter A and B

Kalman filter A and B

Super-Gaussian JMAP

SNR: 35 dB

SNR: 35 dB

SNR: -10 dB

SNR: -10 dB

Fig. 4. Segmental speech SNR vs. noise attenuation

A total of six different noise suppression techniques were in-

vestigated. Among them were the purely statistical weighting rules

Wiener filter [1] and super-Gaussian joint MAP (JMAP) estimator

[4]. They were compared with the modified Kalman filter in [9]

(Kalman filter S) and the new approach (Kalman filter A and B)

that is proposed in this paper. For each Kalman filter, the above men-

tioned weighting rules (cf. Sec. 4) were applied in the update step

respectively. For the evaluation, three different kinds of instrumen-

tal measurements were used, namely the segmental noise attenua-

tion (NA), the segmental speech attenuation (SA) and the segmental

speech SNR (SegSNR) (e.g., [14]).

Figs. 3 and 4 illustrate the averaged results for SA and SegSNR,

respectively, both plotted over NA with the input SNR as control

variable. This procedure makes a fair comparison between noise

attenuation and speech distortion possible. In Fig. 3, a low SA and

a high NA is desirable, in Fig. 4 a high SegSNR and a high NA. In

the upper plots of Figs. 3 and 4, the Gaussian MMSE estimator was

used in the update step of the Kalman filters, in the lower plots the

super-Gaussian JMAP estimator respectively.

The results show that both types of Kalman filters achieve bet-

ter results than the corresponding purely statistical estimator. Even

though the benefits in noise suppression are at the expense of an

increase in speech attenuation/distortion at very low input SNR val-

ues, the proposed Kalman filter outperforms the approach in [9]. The

results show a considerable enhancement by the new estimator. Fur-

thermore, it can be seen that the utilization of the super-Gaussian

JMAP estimator, i.e., the adaptation to the PDF of the prediction er-

ror signal, leads to better results than the application of the Gaussian

MMSE estimator. The instrumental measurements were confirmed

by informal listening tests.
6. CONCLUSIONS

This paper presents a new method for single channel speech en-

hancement that relies on a Kalman filter structure. In the first step,

this model-based approach exploits the temporal correlation of suc-

cessive speech and noise magnitudes using two independent AR pro-

cesses. In the second step, the statistics of the differential signal

are utilized to estimate the prediction errors by applying two dif-

ferent statistical estimators. Although the complexity is moderately

increased by the proposed technique, the instrumental measurements

in terms of segmental speech SNR, speech and noise attenuation

clearly show the better performance compared to the Wiener filter,

the super-Gaussian JMAP estimator and another recently published

Kalman filter approach.
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