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ABSTRACT

We first present our studies on how clock synchronization
errors affect the performance of sound source separation with
a distributed microphone array. We show that our previously-
proposed energy-based sound source separation method is
robust to constant clock shift errors but is more sensitive
to clock drift errors. We then propose a novel technique to
address the clock drift errors. The key observation is that
as the amount of clock drift increases, so does the correla-
tion between the energies of the separated sources which are
obtained from the Independent Component Analysis (ICA).
Based on this observation, we propose an optimization tech-
nique to solve the clock drifting parameter. Experiment
results are shown to validate our approach.

Index Terms— Sound source separation, synchroniza-
tion, clock drift

1. INTRODUCTION

In this paper, we report our studies about the effect of clock
synchronization errors on sound source separation perfor-
mance with a distributed microphone array. As indicated
in [1, 2, 3], one typical scenario of distributed microphone
array is in meeting rooms where many meeting participants
bring portable devices such as laptops and PDAs to meeting
rooms. The microphones on these devices form an ad hoc
array. Such an ad hoc array is different from a conventional
microphone array in multiple aspects. First, the microphones
in an ad hoc array are spatially distributed. Typically the in-
dividual microphones are closer to the meeting participants.
Second, the microphones may not share a common clock thus
there may be synchronization errors. Third, the array geom-
etry is unknown. Fourth, the microphones have different
and unknown gains. Finally, the microphones have different
signal to noise ratios.

Due to these differences, many audio processing tasks
such as sound source localization and source separation re-
quire different algorithms [1, 4, 2, 3]. In particular for sound
source separation, people observed that energy-based deper-
mutation scheme works better than traditional phase-based
depermutation method due to the fact that the microphones
are spatially distributed.

The experiments in [1, 4] were conducted under the as-
sumption that the microphones are synchronized. In many
application scenarios, the individual microphones in an ad
hoc microphone array are usually attached to separate cap-
ture cards each having their own clocks. Therefore, there may
be clock synchronization errors between difference channels.
The focus of this paper is to study the effect of clock synchro-
nization errors on sound source separation performance with
distributed microphone arrays.

Lienhart et. al [5] also studied the clock synchronization
effect on sound source separation performance. One main
difference between their work and ours is that they measured
the performance of ICA with the conventional phase-based
depermutation scheme while our focus is to measure the per-
formance of ICA with energy-based depermutation scheme
which, as reported in [1, 4], works better than phased-based
depermutation scheme. In addition, we propose a novel tech-
nique to estimate clock drift parameter.

2. EFFECT OF CLOCK SYNCHRONIZATION
ERRORS

Assume there are two microphones each with their own
clocks and the two microphones have the same sampling rate
(with respect to their own clocks). Suppose there is a refer-
ence clock which can be thought of as a ground truth clock.
Denote x1(i) and x2(i), i = 1, ..., as the reference signals
which are captured (virtually) by the two microphones ac-
cording to the reference clock. Let x̂1(i) and x̂2(i) denote
the actual signals which are captured by the two microphones
according to their own clocks. Without loss of generality, we
assume the first microphone’s clock is the same as the refer-
ence clock, that is, x̂1(i) = x1(i). We assume there is a linear
relationship between the second microphone’s clock and the
reference clock [6], that is, x̂2(i) = x2(k ∗ i + b) where b

corresponds to a constant shift error while k corresponds to
clock drift errors which grow over time.

Let r denote the sampling rate of the two microphones.
For convenience, we represent k as k = r

r+µ
where |µ| is

equal to the average number of samples drifted per second.
We sometimes call µ the drift rate. For example when µ = 1,
one second on microphone#2’s clock is equal to r

r+1 seconds
on the reference clock. As a result, for each second on the



reference clock, the microphone#2 actually samples r+1
r

∗r =
r + 1 samples. Note that µ is a real number which can be a
fraction or negative number.

We use artificially generated data to simulate clock syn-
chronization errors and measure the effect on sound source
separation performance. First we use the image method [7]
to synthesize two channel data with clocks perfectly syn-
chronized. The data synthesis setting is similar to what was
used in [1] where the signal-to-noise ratio is 20dB and the
simulated room’s reverberation time is T60 = 300ms. The
two microphones are located at (203.2, 228.6, 101.6)m and
(101.6, 228.8, 101.6)m, respectively. The two speakers are
located at (254, 228.6, 101.6)m and (50.8; 228.6; 101.6)m,
respectively. Each speaker speaks for 8 seconds with 100%
overlap. The sampling rate is 8kHz. We use a frame length
and frame-shift of 4096 and 1024 samples, respectively, for
short window FFT transform.

Let x1(i) and x2(i) denote the two channel data in
time domain, respectively. For any given µ and b, we
generate x̂2(i) through resampling based on the formula
x̂2(i) = x2(

r
r+1 i+ b). The resampling is performed by using

linear interpolation. We apply the energy-based source sep-
aration technique [1] to x1(i) and x̂2(i). The energy-based
source separation technique is also an ICA-based source sep-
aration technique. It differs from conventional ICA-based
source separation technique such as [8] in the depermutation
phase where energies of the source separation filters are used
for depermutation.

To measure the effect of constant shift error, we first set
µ = 0 and vary b. Figure 1 shows the Signal to Interference
Ratio (SIR) of the separated signals as a function of b. We can
see that the source separation performance is quite robust to
clock shift errors. When b is less than 100 which is equal to
12.5 milliseconds of clock misalignment, the SIR only drops
0.3dB.

We then set b = 0 and vary µ to measure the effect of drift
error. Figure 2 shows the SIR as a function of µ. We can see
that the sound source separation performance is more sensi-
tive to drift errors. But it is much better than TDOA-based de-
permutation scheme as reported [5]. According to [5], there
is a 5dB drop for a drift rate of one sample per second with
sampling rate of 16kHz. Note that a drift rate of one sam-
ple per second with 16kHz sampling rate is equivalent to drift
rate of half second with 8kHz sampling rate. As shown in Fig-
ure 2, the SIR drops less than 1dB when µ = 0.5. Therefore,
energy-based depermutation scheme is significantly more ro-
bust against drift errors than TDOA based depermutation.

3. DRIFT PARAMETER ESTIMATION

In this section, we present a technique to estimate the drift
parameter. We focus on clock drift error because, as shown in
previous section, the shift errors do not cause serious perfor-
mance degradation.

0 200 400 600 800 1000
7

7.5

8

8.5

9

9.5

10

10.5

11

number of samples being shifted

S
IR

(d
B

)

Fig. 1. Sound source separation performance vs. the amount
of shift between two channels. The horizontal axis is the num-
ber of samples being shifted. The vertical axis is the Signal to
Interference Ratio (SIR). The sampling rate is 8kHz.
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Fig. 2. Sound source separation performance vs. the clock
drift errors. The horizontal axis is µ: the number of drifted
samples per second. The vertical axis is the Signal to Inter-
ference Ratio (SIR). The sampling rate is 8kHz.



Let x̂1(i) and x̂2(i) denote two signals in time do-
main with clock drift errors between the two channels. Let
yλ,2(i) = x̂2(

r+λ
r

i) where r is the sampling rate. We would
like to find the correct λ so that yλ,2(i) is aligned with x̂1(i).

For notational convenience, denote yλ,1 = x1. Let
Yλ,j(ω, t) denote the FFT transform of yλ,j where ω is
the frequency index and t is the frame index. Denote
Yλ = (Yλ,1, Yλ,2)

T . Let Wλ(ω) = φ(Yλ(ω, ·)) denote
the separation matrix resulted from ICA by maximizing the
Kurtosis of Wλ(ω)Yλ(ω, t) [9].

Let Sλ(ω, t) = (S1,λ(ω, t), S2,λ(ω, t))T denote the sep-
arated result, that is, Sλ(ω, t) = Wλ(ω)Yλ(ω, t). The key
observation is that if Yλ,1 is aligned with Yλ,2, the separated
signals S1,λ and S2,λ should have the least amount of corre-
lation. Since the phase information is noisy, we use the corre-
lation of the magnitude while ignoring the phases. We call it
the energy correlation score, which is defined as

Π((S1,λ, S2,λ)T ) =

1

F

F
∑

ω=1

∑N

t=1 |S1,λ(ω, t)||S2,λ(ω, t)|
√

∑N

t=1 |S1,λ(ω, t)|2
√

∑N

t=1 |S2,λ(ω, t)|2
(1)

where F is number of frequency bands and N is the number
of frames. Note that to evaluate energy correlations score, all
we need is the ICA results for each frequency band. There is
no need to perform de-permutation.

λ is then estimated by solving the following optimization
problem

Minimize Π(WλYλ). (2)

We use an iterative quadric function approximation ap-
proach to solve this optimization problem. Figure 3 is an out-
line of the algorithm. The algorithm maintains three points
λk

1 < λk
2 < λk

3 so that

Π(Wλk
1

Yλk
1

) ≥ Π(Wλk
2

Yλk
2

) (3)

Π(Wλk
3

Yλk
3

) ≥ Π(Wλk
2

Yλk
2

) (4)

where k is the iteration counter. Denote

gk
j = Π(Wλk

j
Yλk

j
), j = 1, 2, 3. (5)

We approximate function Π(WλYλ) by a quadratic function
h(λ) which is defined by the three points (λk

j , gk
j ), j = 1, 2, 3.

Assume h(λ) has the form:

h(λ) = aλ2 + bλ + c. (6)

The coefficients a, b, c are determined the following equa-
tions:

a(λk
1)2 + bλk

1 + c = gk
1

a(λk
2)2 + bλk

2 + c = gk
2 (7)

a(λk
3)2 + bλk

3 + c = gk
3

———————————————————————-
Initialization: Obtain λ0

1, λ
0
2, λ

0
3 through linear search. Set g0

j =
Π(Wλ0

j
Yλ0

j
),j=1,2,3. Set k = 0.

Step 1: Solve equation 8 to obtain a, b, c. Set λk
4 = b

2a
.

Step 2:

• Run the fixed point ICA algorithm on Yλk
4

(ω) per frequency
band ω and denote Wλk

4

(ω) as the resulting separation ma-
trix.

• Compute the energy correlation of the separated signals:
gk
4 = Π(Wλk

4

Yλk
4

).

• Discard the λk
j with the largest correlation score gk

j , and set
λk+1

1 < λk+1

2 < λk+1

3 to be the rest three λk
j in sorted order,

and set gk+1

j , j = 1, 2, 3, to be their corresponding correla-
tion scores.

Step3 : If max(|λk+1

1 − λk+1

2 |, |λk+1

3 − λk+1

2 |) < ǫ, stop.
Otherwise, set k = k + 1 and goto Step 1.
———————————————————————-

Fig. 3. Algorithm outline

It is simple to solve this 3 × 3 linear system of equations and
obtain a, b, c. The minimum value of the quadratic function
h(λ) is achieved as

λk
4 = −

b

2a
. (8)

From λk
1 , λk

2 , λk
3 , λk

4 , we remove the one that corre-
sponds to the largest energy correlation score, and denote
λk+1

1 < λk+1
2 < λk+1

3 as the remaining three λk
j s. The

algorithm stops if the difference between the current es-
timate and the optimal value, which is upper bounded by
max(|λk+1

1 − λk+1
2 |, |λk+1

3 − λk+1
2 |), is smaller than a pre-

defined threshold ǫ. Otherwise, it sets k = k + 1 and goes to
the next iteration.

To initialize, we need to search for three initial values
λ0

1 < λ0
2 < λ0

3 satisfying

Π(Wλ0

1
Yλ0

1
) ≥ Π(Wλ0

2
Yλ0

2
) (9)

Π(Wλ0

3
Yλ0

3
) ≥ Π(Wλ0

2
Yλ0

2
) (10)

This is done by starting with an arbitrary initial value λ0,
and evaluate objective function Π(WλYλ) at λ0 − ∆λ, λ0,
and λ0 + ∆λ where ∆λ is a user specified parameter. If
Π(Wλ0−∆λYλ0−∆λ) ≤ Π(Wλ0

Yλ0
), we search for u ≥ 1 so

that Π(Wλ0−(u+1)∆λYλ0−(u+1)∆λ) > Π(Wλ0−u∆λYλ0−u∆λ).
We then use the last three points (λ0 − (u + 1)∆λ, λ0 −
u∆λ, λ0 − (u − 1)∆λ )as the initial λ0

1, λ
0
2, λ

0
3.

The procedure is similar if Π(Wλ0+∆λYλ0+∆λ) ≥
Π(Wλ0

Yλ0
).

4. EXPERIMENT RESULTS

We use simulation data to evaluate the performance of our al-
gorithm. The data is generated in the same way as described
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Fig. 4. Experiment result: The horizontal axis is the iteration
number. The vertical axis are values of λk

1 , λk
2 , and λk

3 .

in section 2. There are two speakers and two microphones.
The two speakers talk simultaneously for 8 seconds. The sam-
pling rate is 8kHz. We generate drifted signal x̂2 by setting
the drift rate µ to be equal to 4.6 samples per second. We
then apply our drift estimation algorithm to x1 and x̂2. We
use λ0 = −1, ∆λ = 2, and ǫ = 0.2.

At the initialization phase, it takes three iterations of linear
search to obtain λ0

1 = 1, λ0
2 = 3, and λ0

3 = 5.
After that, the algorithm enters the quadratic search. It

finishes after 4 iterations. Figure 4 shows the resulting λk
1 ,

λk
2 , and λk

3 for each iteration.
At the end of the optimization procedure, the estimated

solution is λ = 3.5044 which is very close to the ground truth
solution of λ = 3.6. Figure 5 plots the energy correlation
scores at those λ values which are generated during the opti-
mization procedure.

5. CONCLUSIONS

We have presented our studies of clock asynchronization
effect on the performance of sound source separation with
a distributed microphone array. Our numerical experi-
ments showed that the energy-based sound source separa-
tion method is robust to clock shift error. We proposed a
technique to estimate the clock drift error by minimizing the
energy correlation scores of the separated signals. We pre-
sented experiment results validating the effectiveness of the
proposed algorithm.
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