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ABSTRACT

This paper provides a comparison of binary mask estimation
techniques, based on different ways of estimating the instan-
taneous SNR. The effect of six different gain functions and
three noise estimation algorithms on estimating the SNR, and
subsequently the binary mask was assessed. New criteria are
proposed for classifying time-frequency bins as belonging to
the target or masker signals. Sentences from the NOIZEUS
corpus embedded at 0-10 dB SNR levels in four types of noise
were used for evaluation. Performance of the binary mask
estimation algorithms was evaluated in terms of hit rate and
false alarm. Results indicated that the use of different SNR
estimation techniques affects primarily the false alarm rate.

Index Terms— Speech intelligibility, SNR estimation,
ideal binary mask

1. INTRODUCTION

The ideal binary mask has been set as a computational goal
in computational auditory scene analysis (CASA) algorithms
and has also been adopted in “missing feature” speech recog-
nition techniques [1]. Recently, a number of studies demon-
strated high gains in speech intelligibility using the ideal bi-
nary mask technique [2—4]. The ideal binary mask takes val-
ues of zero and one, and is constructed by comparing the local
SNR in each time-frequency (T-F) bin against a preset thresh-
old. In the intelligibility studies, it is usually applied to the
time-frequency representation of a mixture signal and elimi-
nates portions of a signal (those assigned to a “zero” value)
while preserving others (those assigned to a “one” value).
Accurate estimates of the ideal binary mask are thus im-
portant not only for robust speech recognition but also for al-
gorithms aimed at improving speech intelligibility. Various
methods have been proposed to estimate the binary mask and
include methods based on a Bayesian classification of speech-
specific features [5], pitch continuity information [2], sound-
localization cues [6] and estimates of the posterior SNR [7].
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The present study analyzes various other techniques that do
not require training of a large labeled corpus, and do not rely
on having access to auditory-grouping cues or access to bin-
aural inputs. All proposed techniques are centered around es-
timation of the instantaneous SNR from noisy observations
(no training is required).

This paper is organized as following. Section 2 de-
scribes the ideal binary mask estimation techniques, Section
3 presents the results and Section 4 presents the conclusions.

2. BINARY MASK ESTIMATION TECHNIQUES

The ideal binary mask is typically derived by comparing the
true instantaneous SNR to a preset threshold (e.g. 0 dB). In
practice, we do not have access to the true instantaneous SNR
and have to estimate it from the noisy observations. A com-
mon method used in the speech-enhancement literature for es-
timating the SNR is the decision-directed approach [8]. More
precisely, the so called a priori SNR (denoted as &) at frame
m for frequency bin £ is often estimated using the decision
directed approach as follows [8]:
2
&c(m) _ . (G(k, m _ DYi(m —1)) n
Di(m —1)
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where o = 0.98, G(k,m — 1) is the gain function of frame
m— 1 at frequency bin k&, Dy, is the estimate of the noise mag-
nitude spectrum, Y} is the noisy-speech magnitude spectrum
and vy, = Y;2/D? is the posterior SNR. It is clear from the
above equation that the accuracy of the SNR estimate depends
on the gain function (G(k,m)) and the estimate of the noise
spectrum (ﬁk). In [8], the MMSE gain function was used,
but other gain functions (e.g., Wiener gain function) could
potentially be used. Similarly, there exist many methods for
estimating the noise spectrum and include voice activity de-
tection (VAD) algorithms which update the noise spectrum
during silent periods and noise-estimation algorithms which
update the noise spectrum continuously even during speech
activity [7, Ch. 9].



Since the choice of the gain function as well as the type
of noise spectrum estimation method used can potentially af-
fect the accuracy of the binary mask, we investigate the per-
formance of six different gain functions and three different
methods for estimating the noise spectrum. The following
six gain functions were considered: the Wiener algorithm
(Wiener) [9], the Minimum Mean Square Error (MMSE) al-
gorithm [8], the MMSE algorithm with speech presence un-
certainty (MMSE-SPU) [8], the log Minimum Mean Square
Error (logMMSE) algorithm [10], the Perceptually Motivated
Bayesian Estimators of the Magnitude Spectrum (pMMSE)
[11], and the spectral subtraction algorithm (SpecSub) [12].
Detailed description and Matlab implementations of all algo-
rithms can be found in [13].

The performance of two different noise estimation meth-
ods [14, 15] and one voice activity detection (VAD) algo-
rithm [16] was also examined. The threshold value for voice
activity was set to 0.25 in the VAD algorithm. These algo-
rithms were used to update the noise spectrum Dy in Eq. 1.

Based on Eq. 1, we can declare a T-F unit as being target
dominated if £ > 1 (i.e., local SNR > 0 dB) and masker-
dominated if £ < 1. Aside from using the SNR value é from
Eq. 1 as a criterion, we also considered four other criteria.
These criteria are summarized in Table 1 and include: the
posterior SNR () as per [7], the SNR criterion as per [17],
combined ~ and &, and the conditional probability of speech-
presence, p(H1|Y (wg)), where Y (wy,) denotes the complex
noisy spectrum. The value of p(H;|Y (wy)) was determined
as per [8], with ¢ = 0.3. In our study, a T-F unit was declared
target-dominated if p(H1|Y (wy)) > 0.9. Criterion C2 (Table
1) is a new criterion that is proposed in this study.

3. EVALUATION OF BINARY MASK ESTIMATION
TECHNIQUES

The NOIZEUS database, comprising of 30 sentences pro-
duced by six speakers, was used in the evaluation of the ideal
binary-mask techniques [18]. Four types of noise were in-
cluded: multi-talker babble, car, street, and suburban train
noise. The noise signals were added to the speech signals at
0-10 dB SNR. The sentences were processed using the FFT
applied to 20-ms Hanning-windowed frames, with 50% over-
lap between frames.

Performance was assessed using two probability val-
ues: probability of correct detection (Pp) (i.e., hit rate) and
probability of false alarm (Pr). Pp measures the accuracy
in classifying correctly target dominated T-F units, while
the false-alarm measure (Pp) provides the probability that a
masker-dominated T-F unit was wrongly classified as target-
dominated T-F unit. Clearly, we would like Pr to be low
(close to 0) and Pp to be high (close to 1). The plot of Pp vs.
Pr provides the receiver operating characteristics (ROC) of
the various binary-mask estimation techniques.

Two experiments were run to assess the influence of the

gain function (G(k, m)) in Eq. 1, and the influence of the al-
gorithm used to update the noise spectrum Dy, in Eq. 1. In
these experiments, the binary mask was estimated by com-
paring the estimated SNR é (Eq. 1) to 1 (e.g., 0 dB). An
additional experiment was run to assess the influence of alter-
native criteria (see list in Table 1) other than é .

3.1. Effect of gain function

Figures 1-2 show the performance (hit rate vs. false alarm) of
Eq. 1 in estimating the binary mask using six different gain
functions. The noise-estimation algorithm proposed in [15]
was used in this Experiment for updating the noise spectrum.
Overall, performance with the statistical-model based algo-
rithms (MMSE, MMSE-SPU, logMMSE, pMMSE) was bet-
ter than performance with the Wiener and spectral subtractive
algorithms. The difference in performance was more evident
in terms of the false-alarm (Pr) measure. The intelligibility
study in [4] showed that performance was affected the most
by the false alarm rate rather than the value of the hit rate.
That is, a lower false alarm was found to be perceptually more
desirable than having a higher hit rate [4].

3.2. Effect of noise spectrum estimation

Fig. 3 shows the performance of Eq. 1 in estimating the
binary mask using three different methods for updating the
noise spectrum ﬁk: a VAD algorithm [16], Martin’s noise
estimation algorithm [14] and the noise-estimation algorithm
proposed in [15]. The MMSE gain function was used in this
experiment. Overall, Martin’s noise estimation algorithm per-
formed the worst, while the other two algorithms performed
better (and comparably well). This outcome may be attributed
to the fact that Martin’s algorithm is conservative and does not
respond quickly to rapid changes in the SNR level.

3.3. Effect of different criteria

Fig. 4 shows the performance of five different criteria (Ta-
ble 1) used for classifying target-dominated T-F units. Note
that criterion C1 was used in the previous two experiments.
The MMSE gain function was used in this experiment along
with the noise-estimation algorithm proposed in [15]. Cri-
terion C4 [17] performed consistently better than the other
criteria. The proposed criterion C2 performed slightly bet-
ter (lower false alarm rate) than criterion C1, particularly in
babble. Criterion C3 performed the worst, but could potential
yield better performance had a different threshold value was
chosen [7]. The new criterion C5 performed as well or better
than criterion C1.

4. CONCLUSIONS

This paper provided a comparison of several binary mask esti-
mation techniques. All techniques were centered on different



Cl C2 C3

C4 C5

E>1 | E>1&y>2 | v>1

Sk > 0.707Y}, where S, = max((), Y. — Dk)

p(HﬂY) > 0.9

Table 1. Five different criteria for classifying target-dominated T-F units.

ways to estimate the instantaneous SNR. The effect of various
gain functions and noise estimation algorithms on estimating
the SNR was assessed. The potential of using different crite-
ria for classifying target-dominated T-F units was also inves-
tigated. Performance of binary mask estimation algorithms
was evaluated in terms of hit rate and false alarm. Results
indicated that the use of different SNR estimation techniques
affects primarily the false alarm rate. Performance generally
improves (lower false alarm rate) as the SNR level increases
(from O to 10 dB).
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Fig. 1. Performance of binary mask estimation techniques for ~ Fig. 3. Performance of binary mask estimation techniques
six different gain functions. Speech was corrupted by babble  for three different noise estimation algorithms. Speech was

and train noise at 0 dB, 5 dB and 10 dB. corrupted by babble and car noise at 0 dB, 5 dB and 10 dB.
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Fig. 2. Performance of binary mask estimation techniques for ~ Fig. 4. Performance of binary mask estimation techniques
six different gain functions. Speech was corrupted by car and  for five different criteria (Table 1). Speech was corrupted by
street noise at 0 dB, 5 dB and 10 dB. babble and car noise at 0 dB, 5 dB and 10 dB.



