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ABSTRACT

This paper deals with a new technique for multi-channel separation
of speech signals from convolutive mixtures under coherent noise.
We demonstrate how the scaled transfer functions from the sources
to the microphones can be estimated even in the presence of sta-
tionary coherent noise. The key to this are generalized eigenvalue
decompositions of the power spectral density (PSD) matrices of the
noisy speech and noise-only microphone signals with a controlled
estimation of these matrices exploiting time-frequency sparseness
of the speech sources. Separation is further improved by subsequent
Gram-Schmidt orthogonalization which places spatial nulls at the in-
terferers’ directions, while noise reduction is improved by employ-
ing a novel blocking matrix and adaptive interference canceller in
a Generalized Sidelobe Canceller (GSC)-like structure. We report
promising experimental results for 2 speech sources with significant
coherent noise in reverberant environments (RT60=0ms..500ms).

Index Terms— Noisy Source Separation, Sparse Signal Sepa-
ration, Maximum SNR Beamformer, Speech Enhancement

1. INTRODUCTION

Blind source separation (BSS) is an approach for source signal re-
construction given an unknown mixture of source signals captured
by the sensors. The BSS of speech signals has many applications
including hands-free telecommunication or auditory scene analysis
in a conference situation. In such applications one usually has to
deal with sensor signals which are degraded by stationary noise of
unknown spectral and spatial characteristics.
Methods for BSS have focused mainly on two different approaches:
Independent Component Analysis (ICA) and Time-Frequency
Masking (TFM). Techniques based on ICA usually involve higher
order statistics and non-linear cost functions [1]. To deal with convo-
lutive mixtures ICA can be employed bin-wise in frequency domain
[2], however at the expense of permutation ambiguity. Time domain
ICA approaches for convolutive mixtures have also been proposed
[3] avoiding the permutation problem.
Another versatile approach is time-frequency masking (TFM) re-
quiring approximately disjoint orthogonality of source signals [4].
This assumption holds for speech signals and reduces the BSS to
a clustering problem of the observations [5]. TFM adds spectral
subtraction principles to the source separation task but also inherits
loss of speech quality and musical tones from these.
The focus of this paper is on multi-channel source separation in the
presence of background noise, wherein noise-only periods are avail-
able and noise characteristics are stationary. While the consideration
of noisy sensor signals is common in adaptive beamforming, it is
often disregarded in the source separation literature. In [6] an algo-
rithm for isotropic diffuse noise fields was presented. However, this

method is based on the free field assumption and does not employ
spatial filtering for source separation.
Recently we have proposed a blind beamforming technique based
on the frequency-bin-wise generalized eigenvalue decomposition
(GEVB) [8]. Using a single-channel postfilter it was able to ap-
proach the performance of the minimum variance distortionless
response (MVDR) beamformer, however without requiring a priori
information about the array geometry or the source-to-sensor trans-
fer functions. In this paper we extend this concept in various ways to
arrive at a BSS solution in the presence of additive noise. By exploit-
ing time-frequency sparseness of speech we are able to estimate the
transfer function ratios with a blind GEV beamforming approach
even if multiple sources are active and even if noise is present at
all times. To improve the suppression of the interfering source a
Gram-Schmidt orthogonalization is applied to place spatial nulls
at the interferer’s direction. Permutation alignment is achieved by
minimizing inter-frequency correlation of the output signals, similar
to [11]. Finally, to improve the suppression of coherent noise, the
transfer function ratio estimates are used to derive a blocking matrix
(BM), which provides noise-only references for the adaptive inter-
ference canceller (AIC) in a Generalized Sidelobe Canceller (GSC)
configuration. Figure 1 depicts the overall system architecture in
case of 2 sources.
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Fig. 1. GSC-like system structure with beamformers (BFs), blocking
matrix (BM) and adaptive interference cancellers (AICs)

2. PROPOSED METHOD

We are given an array of M microphones and N Sources. With
a K-point short-time Fourier Transform (STFT) a frequency repre-
sentation of the signal at the j-th microphone is given by:

xj(k, m) =
N
∑

i=1

hij(k)si(k, m) + nj(k, m) j = 1..M (1)

or in a more compact vector notation,

X(k, m) =

N
∑

i=1

Hi(k)si(k, m) + N(k, m) (2)



where k = 1, ..., K denotes the frequency bin and m > 0 is the
time-frame index. hij(k) are the transfer functions from the i-th
source to the j-th microphone, si(k, m) and nj(k, m) are STFTs of
the source si and noise nj respectively.
For sparse signals, such as speech, it holds that only a single source
is present at any given time-frequency bin [4]. Then expression (2)
can be approximated by

X(k, m) ≈ Hi(k)si(k, m) + N(k, m) =: Xi(k, m) (3)

where, in a slight abuse of notation, the index i shall indicate the
dominant source in time-frequency bin (k, m).

2.1. Adaptive Generalized Eigenvector Beamforming

For simplicity let us assume for a moment that only source si is
active. The beamformer output for source si is given by

gi(k, m) = F
H

i (k, m)X(k, m) (4)

with the beamformer coefficient vector Fi(k, m). The design cri-
terion for the Generalized Eigenvector Beamforming (GEVB) is to
find beamformer coefficients Fi(k, m) which maximize the SNR in
each frequency bin k:

Fi,SNR(k) := arg max
Fi

F
H

i (k)ΦXiXi
(k)Fi(k)

FH

i (k)ΦNN(k)Fi(k)
− 1 (5)

where ΦXiXi
(k) = E[Xi(k, m)XH

i (k, m)] and ΦNN(k) =
E[N(k, m)NH(k, m)] are short-time cross power spectral density
matrices (PSDs) of noisy speech and noise respectively. Fi,SNR(k)
have to be constrained to unit norm. Note that the PSD of the noisy
speech is independent of the frame index m in our notation. This is
not correct since the source signal is assumed to be nonstationary.
Nevertheless it can be shown that the optimum solution is equal
for all frame indices. Therefore we keep this simplified notation.
It is shown in [8] that the optimum coefficient vector Fi,SNR(k) is
the principal eigenvector of Φ

−1

NN
(k)ΦXiXi

(k) and furthermore
Fi,SNR(k) is related to the the transfer function vector Hi(k) by

Ĥi(k) := ΦNN(k)Fi,SNR(k) = ζ(k)Hi(k) (6)

where ζ(k) is an arbitrary complex scalar.
Before solving the generalized eigenvalue problem the PSD matrices
need to be determined. The estimation of ΦNN can be easily be done
in noise only periods, e.g. using an exponential time window

Φ̂NN(k, m) = (1 − β)Φ̂NN(k, m − 1)

+β(X(k, m)XH(k, m))|X=N (7)

with an appropriate initialization for Φ̂NN(k, 0) and 0 < β < 1. To
get an estimation for ΦXiXi

(k) we can proceed in the same manner
in speech plus noise periods:

Φ̂XiXi
(k, m) = (1 − α)Φ̂XiXi

(k, m − 1)

+α(X(k, m)XH(k, m))|X=Xi
. (8)

where α is a time constant 0 < α < 1. Hence we need a voice
activity detector (VAD) to discriminate between these two cases.
The estimation of the principal eigenvector can be carried out by
using the power iteration method [9]:

F̃i(k, m) = Φ̂
−1

NN
(k, m)Φ̂XiXi

(k, m)F̂i(k, m − 1) (9)

F̂i(k, m) =
F̃i(k, m)
∥

∥

∥
F̃i(k, m)

∥

∥

∥

(10)

This simple algorithm showed excellent convergence behavior and
good estimates for Fi,SNR(k) and thus for the scaled transfer function
Ĥi(k) in practical tests.

2.2. Separation procedure

Now we turn back to the multi-speaker scenario with N simulta-
neously active sources. Based on the sparse source assumption (3)
it is obviously possible to estimate all transfer functions Ĥi(k) if
we update the PSD matrices Φ̂XiXi

(k, m) for every source only
in time-frequency bins where the source si is dominant. A simple
modification of equation (8) accounts for this consideration:

Φ̂XiXi
(k, m) = (1 − αbi(k, m))Φ̂XiXi

(k, m − 1)

+αbi(k, m)(X(k, m)XH(k, m)) (11)

where bi(k, m) is a binary mask typically defined in sparse source
BSS approaches [4]:

bi(k, m) =

{

1, if source si is dominant
0, else.

(12)

Unfortunately, reliable estimates of bi(k, m) are hard to obtain in a
reverberant environment. Consequently we fall back to a soft deci-
sion:

bi(k, m) = γ(li(k, m)) (13)

where li(k, m) is the source activity likelihood and γ(·) is a non-
linear decision function. We employ the following soft decision
function:

γ(u) = tanh ((u + c1)
c2) (14)

In figure 2 an example of the decision characteristic of equation (14)
is given for some appropriate parameters c1 and c2.
To obtain an estimate of li(k, m) we propose a feedback loop by
using the power ratio at the beamformer outputs:

li(k, m) =
|gi(k, m)|2

∑N
n=1

|gn(k, m)|2
. (15)

Since Fi(k, m) is normalized, see (10), equation (15) can be seen as
an input vector matching score. Thus this feedback in combination
with the adaptive GEVB technique results in a straightforward ob-
servation vector clustering algorithm. This is similar to [5] however
with special consideration for spatially correlated noise.
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Fig. 2. Soft decision function (c1 = 0.25, c2 = 16).



2.3. Permutation alignment

Since the separation is carried out in each frequency bin separately
we are suffering from arbitrary permutation of the sources in each
frequency bin. In order to reconstruct properly separated speech sig-
nals in time-domain, frequency-domain separated signals originat-
ing from the same source should be aligned together. Since this well
known problem in frequency domain blind source separation is not
the focus of this paper we refer to a recently proposed method [11].

2.4. Gram-Schmidt Orthogonalization and Blocking Matrix

Computing the system output as yi,MF(k, m) = Ĥ
H

i (k)X(k, m)

with Ĥi(k) = ΦNN(k)F̂i(k) corresponds to spatial matched fil-
tering. While this will form a spatial pattern with main lobe in the
direction of the i-th source, no special spatial suppression is achieved
regarding the interferers. Thus the output has a good speech quality
but contains also strong interfering signals. To gain in signal-to-
interference (SIR) we apply a Gram-Schmidt orthogonalization to
force mutual orthogonality of the filter coefficients. In the case of 2
sources this results in:

W1/2(k) :=

(

I −
Ĥ2/1(k)ĤH

2/1
(k)

ĤH

2/1
(k)Ĥ2/1(k)

)

Ĥ1/2(k). (16)

Likewise the BM for the GSC structure can easily obtained by

B
H(k) := I −

Ĥ1(k)ĤH

1 (k)

ĤH

1
(k)Ĥ1(k)

−
W2(k)WH

2 (k)

WH

2
(k)W2(k)

. (17)

It can easily be verified that the noise reference signals U(k, m) =
B

H(k)X(k, m) do not contain any source signal components, if
Ĥ2/1(k) are perfect estimates. A similar BM for a GSC-like struc-
ture in case of one source was also proposed in [10].

2.5. TDOA Estimation

While equation (16) place spatial nulls at the interferer direction, the
filter coefficients have no constraint for target direction gain. If the
room transfer function is given, a solution is achieved by postulating
a distortionless response in target signal direction:

Ŵi(k) =
Wi(k)

HH

i (k)Wi(k)
(18)

Since Hi(k) is not available, we approximate this unknown transfer
function by

Hi(k) ≈ [1, e
−jωkτi,2 , ..., e

−jωkτi,M ]T (19)

where τi,j is the time difference of arrival (TDOA) between the the
first and j-th sensor for the i-th source. Note that in absence of
reverberation (19) becomes an equation.
We can obtain estimates for τi by searching for the maximum of the
cross correlation of the impulse responses of the first and the j-th
estimated room transfer function, where the correlation is typically
carried out in the frequency domain:

τ̂i,j = arg max
τ

IFFT
{[

Ĥi,1(0)Ĥ∗

i,j(0), ..., Hi,1(K)Ĥ∗

i,j(K)
]}

.

(20)
With this normalization the output of the beamformer becomes fi-
nally ŷi(k, m) = Ŵ

H

i (k)X(k, m). In [8] further variation possi-
bilities for this normalization were proposed.

2.6. Method summary

Summing these considerations the algorithm becomes:

1. Use VAD to discriminate between noise-only and speech-
presence periods.

2. Estimate Φ̂NN(k) with equation (7) in noise-only periods.

3. Set Φ̂XiXi
(k, 0) with appropriate F̂i(k, 0) to random values.

4. In every frame of speech-presence periods:

(a) Compute intermediate output (4).

(b) Calculate soft masking with (13) and (15).

(c) Update Φ̂XiXi
(k, m) by applying (11).

(d) Carry out one step of power iteration (9) and (10).

5. Use (6) to calculate Ĥi(k).

6. Solve permutation alignment with [11].

7. Use Gram-Schmidt process to place spatial zeros (16) and
build BM with (17).

8. Use TDOA estimates for proper gain factor.

9. Calculate Beamformer output ŷi and noise references U.

10. Conduct AIC adaptation in noise-only periods.

11. Calculate system output yi.

3. EXPERIMENTS

In this section we experimentally evaluate the proposed blind source
separation method for the case of two simultaneously active sources
with a correlated noise source in a reverberant enclosure of size
(6m) x (4m) x (2m). A uniform circular array (0.1m radius) with
8 microphones was used. The sources were positioned around the
microphone array in 5 different locations. 10 utterances from dif-
ferent speakers (5 male and 5 female), sampled at 16 kHz, were
used as source speech signals. Source signal durations are about 5 s.
Taking 2 out of 10 utterances at 5 possible positions and 8 analyzed
reverberation times between 0 ms and 500 ms results in 3600 audio
files. Recordings of the fan noise of a video projector were used as
coherent noise. The input power ratio of the two sources and the
coherent noise was about 0 dB. To every microphone white noise
with SNR of about 25 dB was added. The STFT frame size was 512
samples with an 1/4 shift. The AIC filter length was 1024 samples.
The system performance was evaluated in terms of signal-to-
interference-ratio (SIR), signal-to-noise-ratio (SNR) and signal-
to-distortion-ratio (SDR)

SIR := 10 log
10

(

E[ŝ2(t)]

E[s̄2(t)]

)

[dB] (21)

SNR := 10 log
10

(

E[ŝ2(t)]

E[n̄2(t)]

)

[dB] (22)

SDR := 10 log
10

(

E[ŝ2(t)]

E[(ŝ(t) − aŝDSB(t − δ))2]

)

[dB] (23)

where ŝ(t) is the time domain target signal component, s̄(t) is the
interferer’s component, n̄(t) is the noise component at the system
output. The reference ŝDSB(t) for the speech distortion measure-
ment was the output of a delay-and-sum Beamformer (DSB), whose
optimal delay τj was assumed to be perfectly known, and where the
parameters a and δ were chosen to maximize SDR. Thus the coeffi-
cients a and δ compensate the amplitude and delay.



Figure 3 shows the simulation results. For comparison we also ap-
ply our method if all PSD matrices ΦXiXi

(k) and ΦNN(k) are per-
fectly known a priori. Furthermore the performance is given with
and without AIC path to gain insight into the noise suppression ca-
pabilities of the GSC-like structure.
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Fig. 3. SIR, SNR and SDR of proposed method compared to ideal
case of perfectly known PSD matrices

We achieved good separation results in low reverberation condi-
tions. As expected separation performance of the proposed method
decreases for higher reverberation times. The offset to the ideal is
caused by a model mismatch since equation (3) is an approximation
and does not reflect the mixing situation correctly.
Noise suppression is very large at low reverberation times and sur-
prisingly good even at high reverberation times. Due to mismatch of
transfer function estimates and limited filter lengths we are suffering
from leakage of source signals into the AIC path, which results in
a somewhat lower SIR after noise cancellation. Hence we have to
sacrifice a little bit separation performance for a significant boost in
noise suppression.
Speech quality evaluation gives satisfying results in low reverbera-
tion conditions. At high reverberation time the SDR measurement
has to be viewed with caution since a fair quantitative comparison

especially in reverberant environment is difficult. In hearing tests
speech quality with and without AIC is hardly distinguishable from
each other.

4. CONCLUSIONS

A blind speech separation method with special account for spatially
correlated noise under sparse source assumption has been presented.
Our method corresponds to a blind system identification and filter
synthesizing approach. We also confirmed that the proposed algo-
rithm works well in low to medium reverberation environment.
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