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ABSTRACT

A simplified decoding method for the concept of REverbera-

tion MOdeling for Speech recognition (REMOS) [1] is pro-

posed. In order to achieve robust distant-talking Automatic

Speech Recognition (ASR), the REMOS concept uses a com-

bination of clean-speech HMMs and a reverberation model

to perform feature-domain dereverberation during decoding.

The simplified decoding/dereverberation method proposed in

this contribution significantly reduces the computational com-

plexity of the concept without a major performance reduction.

Index Terms— Dereverberation, robust ASR, reverbera-

tion model, feature-domain processing.

1. INTRODUCTION

Distant-talking microphone systems enable human/human

and human/machine-interaction without tethering the user

to a close-talking microphone. The large distance between

speaker and microphone in distant-talking scenarios implies

that the microphone does not only pick up the desired sig-

nal but also background noise, interfering speakers, and the

reverberation of the desired signal caused by multiple reflec-

tions of the sound waves at the boundaries of the recording

room. The reverberation does not only reduce the perceived

sound quality but also decreases the performance of ASR sig-

nificantly.

The reduced ASR performance is mainly caused by the

dispersive effect of reverberation on the feature representa-

tion of speech used for ASR. While the feature calculation is

based on a short-time spectrum analysis with a typical frame

length of 10 to 40 ms, the length of the Room Impulse Re-

sponse (RIR) describing the acoustic path between speaker

and microphone ranges from 200 to 800 ms in typical office

or home environments. Therefore, the RIR extends over sev-

eral frames and the reverberation causes the speech features

to be smeared along the time axis. Thus, an effect similar to

intersymbol interference known from radio communications

is observed.

The dispersion across frames causes the current observed

feature vector to depend strongly on the previous feature

vectors. Therefore, reverberant feature vector sequences

cannot be modeled very well by Hidden Markov Mod-

els (HMMs) since one of the basic assumptions underlying

HMMs, namely that the current frame depends only on the

current state, is heavily violated. Furthermore, the potential

gain of model adaptation and compensation techniques work-

ing only within one frame, like cepstral mean subtraction [2]

or maximum likelihood linear regression [3], is limited.

A promising way to tackle the dispersion problem is to

dereverberate the speech signal before feature extraction. Nu-

merous approaches based on linear prediction (e. g. [4, 5]),

multi-channel deconvolution (e. g. [6, 7, 8]), and spectral sub-

traction (e. g. [9, 10]) have been proposed. A recent sugges-

tion to use all available prior knowledge about the source sig-

nal in a probabilistic framework [11] appears to be particu-

larly interesting for dereverberation used as preprocessing for

ASR. Here, it is possible to employ the extremely powerful

speech models of the recognizer to describe the source signal.

The REMOS concept [1], already proposed in 2006, is

heading in a similar direction as [11] by combining the clean-

speech model represented by the recognizer’s HMMs and a

statistical reverberation model to perform dereverberation di-

rectly in the feature domain. A simplified decoding method

for the REMOS concept is proposed in this paper to reduce

the computational complexity of the approach.

The paper is structured as follows: Elements of the RE-

MOS concept necessary for the description of the new decod-

ing method in Section 3 are reviewed in Section 2. Experi-

mental results are discussed in Section 4, and conclusions are

drawn in Section 5.

2. REVIEW OF THE REMOS CONCEPT

The acoustic model used in the REMOS concept is a com-

bination of a clean-speech HMM network Nλ and a statisti-

cal reverberation model η as illustrated in Figure 1. If mel-

frequency spectral (melspec) coefficients (see Figure 2) are



η

Nλ
s(n)

x(n)

h(m, n)

∗

∗ denotes melspec convolution
of s(n) and h(m, n)

Fig. 1. Acoustic model of the REMOS concept.
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Fig. 2. Calculation of melspec features.

used as features, as assumed throughout the paper, the rever-

berant feature vector sequence x(n) can be approximated by a

convolution of the clean-speech HMM output sequence s(n)
and the output sequence h(m,n) of the reverberation model

(see [12])

x(n) =
M−1∑

m=0

h(m,n) ⊙ s(n − m) . (1)

Here, ⊙ denotes element-wise multiplication, M is the length

of the reverberation model, and m, n are frame indices. Note

that the vector x(n) = [x0(n), . . . , xL−1(n)]T with T denot-

ing transpose consists of L features xl(n). The vectors s(n)
and h(m,n) are defined accordingly.

The reverberation model η represents the RIR in the fea-

ture domain. As in real-world applications the RIR is usu-

ally unknown and time-varying and the approximation errors

of the melspec convolution (1) lead to further variability, a

fixed feature-domain RIR representation is not sufficient to

describe the reverberation. Instead, a statistical reverberation

model η is suggested in [1].

The reverberation model η exhibits a matrix structure

where each row corresponds to a certain mel channel and each

column to a certain frame as shown in Figure 3. The matrix

elements are modeled by Independent Identically Distributed

(IID) random processes. For simplicity, the random processes

of the different matrix elements are assumed to be statistically

independent and normally distributed. Thus, η can be consid-

ered as a matrix-valued IID Gaussian random process.

For recognition, an extended version of the Viterbi algo-

rithm is employed [1]. Its recursion equation is given by

γj(n) = max
i

{γi(n − 1) · aij · Oij(n)}, (2)

Oij(n) = max
s(n),h(m,n)

{ fλ(j, s(n)) · fη(h(m, n))} s. t. (3)

x(n) = h(0, n) ⊙ s(n) +

M−1∑

m=1

h(m, n) ⊙ šij(n − m). (4)

Here, γj(n) is the Viterbi metric for state j at frame n, aij

is the transition probability from state i to state j, fλ(j, s(n))
and fη(h(m,n)) are the output densities of the HMM λ and

the reverberation model η, respectively. The term Oij(n) can

be considered as the output density of the combined acous-

tic model. It is calculated by maximizing the joint density of

frame m

mel channel l

Fig. 3. Reverberation model η for observation frame n.

the HMM and the reverberation model subject to (s. t.) the

constraint that the combination of the model outputs is equal

to the current reverberant observation. This maximization

is called inner optimization in the following. The estimated

clean-speech vectors šij(n−m) are known from previous it-

erations of the algorithm. They are retrieved from a matrix of

clean speech vectors (3D tensor) which is set up during de-

coding. The correct clean speech estimates are selected by

tracing back the most likely partial path with previous state i

and current state j (see [12] for details).

The inner optimization of Equation (3) s. t. (4) finds the

optimum contributions of the HMMs and the reverberation

model to the current observation. Since it determines an es-

timate ŝij(n) of the current clean-speech vector, it represents

the core of the feature-domain dereverberation algorithm. In-

troducing a simplified notation by the mappings s(n) → s0,

šij(n−m) → šm, x(n) → x, h(m,n) → hm, the constraint

(4) can be written as

x = h0 ⊙ s0 +
M−1∑

m=1

hm ⊙ šm , (5)

where the underlined vectors are Gaussian random vectors with

diagonal covariance matrix and the overlined vectors are known

from previous steps of the algorithm.

The constraint is linearized by approximating the non-

Gaussian random vector x̃0 = h0 ⊙ s0 with a Gaussian ran-

dom vector x0 exhibiting the same mean and variance as x̃0.

Thus we can express the constraint as

x = x0 +
M−1∑

m=1

hm ⊙ šm . (6)

A two-step solution to the inner optimization problem is

derived in [1]. In the first step, the optimum vectors

x0,hm ∀m = 1 . . . M − 1 are determined by solving (3)

s. t. (6). The corresponding closed-form solution is given in

[1]. In the second step, the optimum vectors h0 and s0 are

calculated by maximizing

fλ(j, s0) · fη(h0) s. t. x0 = h0 ⊙ s0 . (7)

Applying the method of Lagrange multipliers to this problem

yields the fourth-order equation

σ2
s0

⊙h
4
0−mh0

⊙σ2
s0

⊙h
3
0+ms0

⊙σ2
h0

⊙x0⊙h0−x
2
0⊙σ2

h0
=0 (8)

to be fulfilled by the optimum vectors. Therefore, numerical

methods are employed in [1] to find h0 and s0. All operations

in (8) have to be performed element-wise, and mh0
, σ2

h0
, ms0

,

and σ2
s0

denote the mean and the variance vectors of h0 and

s0, respectively.



3. SIMPLIFIED DECODING APPROACH

In this section, two simplifications for the inner optimization

problem are proposed to reduce the computational complex-

ity of the decoding algorithm used in the generic REMOS

concept. The first simplification reduces the number of vec-

tors calculated in the first step of the inner optimization. The

second simplification avoids the solution of the fourth-order

equation in the second step of the inner optimization by using

the mean of h0 as an estimate for the optimum vector h0.

3.1. Simplification of the first step

In the first step of the inner optimization used in [1], the opti-

mum vectors x0,hm are determined for all m = 1 . . . M − 1
by maximizing (3) s. t. (6). Since only the vector x0 and the

contribution of the reverberation model to the Viterbi score is

needed for the subsequent steps of the algorithm, the problem

can be simplified by capturing the reverberation exceeding the

current frame with one random vector xR given by

xR =
M−1∑

m=1

hm ⊙ šm . (9)

Since xR is a weighted sum of Gaussian random vectors, xR

is also Gaussian with mean and variance vectors given by

mxR
=

M−1∑

m=1

mhm
⊙ šm ,

σ2
xR

=

M−1∑

m=1

σ2
hm

⊙ š2m ,

where mhm
and σ2

hm
are the mean and variance vectors of

hm. Therefore, the first step of the inner optimization reduces

to determining x0 and xR by solving the following problem

max
x0,xR

{ fx0
(x0) · fxR

(xR)} (10)

s. t. x = x0 + xR . (11)

Applying the method of Lagrange multipliers, we obtain

x0 =
σ2
xR

σ2
x0

+ σ2
xR

⊙ mx0
+

σ2
x0

σ2
x0

+ σ2
xR

⊙ (x − mxR
) ,

xR =
σ2
x0

σ2
x0

+ σ2
xR

⊙ mxR
+

σ2
xR

σ2
x0

+ σ2
xR

⊙ (x − mx0
) .

Both vectors x0, xR are used for the calculation of the Viterbi

score, and x0 is also used in the second step of the inner opti-

mization.

3.2. Simplification of the second step

To avoid the solution of the fourth-order equation (8), we re-

place the optimum vector h0 with the mean vector mh0
, and

by solving the constraint in (7) for s0, we obtain

s0 =
x0

mh0

. (12)

Room A Room B Room C

Type lab studio lecture room

T60 300 ms 700 ms 900 ms

d 2.0 m 4.1 m 4.0 m

SRR 4.0 dB −4.0 dB -4.0dB

M 20 50 70

Table 1. Summary of room characteristics: T60 is the rever-

beration time, d is the distance between speaker and micro-

phone, SRR is the signal-to-reverberation-ratio, and M is the

length of the reverberation model for the corresponding room.

The estimated clean-speech vector s0 is used in the calcula-

tion of the Viterbi score. Furthermore it is used as the basis to

calculate the most likely clean speech estimate ŝj(n) for the

current state j and the current frame n which is stored in the

matrix of clean speech estimates (see [12]).

4. EXPERIMENTS

Experiments with the same connected-digit recognition task

as used in [1] are carried out to analyze the performance and

the computational savings of the simplified algorithm.

4.1. Experimental setup

The experimental setup is identical to that of [1]. Therefore,

only the most important facts are recalled here. The REMOS-

based recognizer is implemented by extending the decoding

routines of HTK [13]. Static melspec features with 24 mel

channels calculated from speech data sampled at 20 kHz are

used. 16-state word-level HMMs with single Gaussian densi-

ties serve as clean-speech models. To get the reverberant test

data (and the reverberant training data for the training of re-

verberant HMMs used for comparison), the clean-speech TI

digits data are convolved with different RIRs measured at dif-

ferent loudspeaker and microphone positions in three rooms

with the characteristics given in Table 1. A strict separation

of training data (speech and RIRs) from the test data is main-

tained in all experiments. Each test utterance is convolved

with an RIR selected randomly from a number of measured

RIRs in order to simulate changes of the RIR during the test.

4.2. Experimental results

Table 2 compares the word accuracies and the computational

complexity of conventional HMM-based recognizers to that

of the REMOS concept with different decoding methods. As

the experiments are based on melspec features and single

Gaussian densities, the recognition rates are not comparable

to those of state-of-the-art recognizers using MFCCs and mix-

tures of Gaussians. Simplifying the first step of the inner opti-

mization according to Section 3.1 reduces the computational

complexity of the REMOS concept to 88 %, 61 %, and 53 %



clean Room

data A B C

acc. RTF acc. RTF acc. RTF acc. RTF

(I) conventional HMM, clean training 82.0 % < 0.1 51.5 % < 0.1 13.4 % < 0.1 25.9 % < 0.1

(II) conventional HMM, reverberant training - - 66.8 % < 0.1 54.6 % < 0.1 46.0 % < 0.1

(III) original REMOS [1] - - 77.6 % 8.7 71.6 % 12.7 67.6 % 15.3

(IV) REMOS, 1st step simplified (see Section 3.1) - - 76.2 % 7.1 72.4 % 7.8 68.2 % 8.2

(V) REMOS, 1st and 2nd step simplified (see Section 3.1 and 3.2) - - 74.3 % 1.7 70.8 % 2.3 66.0 % 2.9

Table 2. Word accuracies (acc.) and Real-Time Factors (RTF) measured on an AMD Opteron processor with a clock rate of

1.6 GHz for the conventional HMM-based recognizer trained on clean (I) and reverberant speech (II), the REMOS concept with

the original decoding method proposed in [1] (III), the simplified decoding applied to the first step of the inner optimization

(IV), and to the first and second step of the inner optimization (V).

of the original complexity for the rooms A, B, and C, respec-

tively. The computational savings increase with the length

M of the reverberation model because the number of vectors

hm calculated by the original decoding algorithm increases

with M . The recognition rates obtained by the simplified ap-

proach are equivalent to those of the original approach. If

both the first step and the second step (see Section 3.2) of

the inner optimization are simplified, the computational com-

plexity of the REMOS concept is reduced to less than 20 %

of the original complexity for all three rooms. With a real-

time factor of 1.7, real-time capability is almost achieved for

room A. At the same time, the recognition accuracy is only

slightly reduced. That is, the recognition rates are still signif-

icantly higher than those achieved with conventional HMM-

based recognizers even if their acoustic models are trained on

matched reverberant data.

Because of the enormous computational reductions for the

solution of the inner optimization problem, the major remain-

ing complexity of the decoding algorithm lies in the back-

tracking performed in each iteration to select the clean-speech

estimates šij(n−m) for the previous frames. Therefore, fur-

ther complexity reductions can be expected from optimizing

the backtracking routines.

5. SUMMARY AND CONCLUSIONS

Two simplifications of the decoding algorithm employed by

the REMOS concept to perform feature-domain dereverber-

ation for robust distant-talking ASR have been proposed in

this contribution. A reduction in computational complexity to

less than 20 % of the original complexity is achieved by these

simplifications so that the REMOS concept is very close to

real-time capability for the task of connected digit recogni-

tion. The recognition accuracy is only slightly reduced. One

of the simplifications consists of capturing the reverberation

exceeding the current frame in one random vector. There-

fore, the number of independent variables for the inner opti-

mization is significantly reduced. This reduction appears to

be very attractive for implementing the REMOS concept for

more powerful speech features, like MFCCs, which requires

numerical optimization routines.
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