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ABSTRACT

This paper describes a multichannel echo control algorithm
that learns a model of the room while tracking its changes.
Using the history of echo path estimates, the algorithm grad-
ually infers an eccentric ellipsoid as the space for echo paths
(impulse responses). The directions of skewness of the ellip-
soid form a basis for a low dimensional affine space (linear
manifold) containing the principle components of echo paths.
Assigning a high priority to the principle components, the al-
gorithm reduces the dimension of the search space to combat
the non-uniqueness problem. We implemented the algorithm
on a real-time software platform running on a Xeon 3.4 GHz
processor at a sampling rate of 44.1 KHz. In tested practi-
cal setups, once the model was mature, the algorithm demon-
strated high stability and accuracy without the need to uncor-
relate the excitation signals. For a 3 × 3 multichannel setup,
it takes less than 4 seconds to reduce echo by about 22 dB in
a regular conference room.

Index Terms— Echo control, learning, manifold, non-
uniqueness, and principle components.

1. INTRODUCTION

Recently there has been increasing market demand for im-
mersive telepresence systems. Such systems promote collab-
oration among remote participants by creating a compelling
illusion of being in the same place. Enabling spatial audio in
such systems has been a big challenge since it requires a high
fidelity multichannel echo control. Following the pioneering
work of Sondhi et al. [1], the problem has become an ac-
tive area of research. A major challenge in these systems is
the correlation of the excitation signals sent to the loudspeak-
ers. This phenomenon manifests itself as an ill-conditioned
search for echo path estimates, a problem often called the
non-uniqueness problem resulting in unstable control algo-
rithms [2].

A variety of approaches have been proposed to combat
non-uniqueness [2], [3]. A majority of them uncorrelate the
excitation signals via nonlinear or time-variant operators. These
algorithms are robust and converge quickly. The drawback

of these methods is the distortion of spatial and temporal at-
tributes of the audio signals. Such distortion impairs the user
experience in telepresence systems. Another category of al-
gorithms constrains the search for the unknown parameters.
Some update a portion of parameters, in the time domain or
frequency domain, in each new estimation [4]. Some others
approximate the space of echo paths by a finite number of set-
theoretic constraints [5], [6]. These algorithms do not distort
the excitation signals. They regularize the convergence by
applying generic constraints on the search space. Thus, they
often result in a tradeoff between stability and accuracy, i.e.,
level of the residual echo.

Can we develop an algorithm that does not distort the ex-
citation signals and converges quickly and accurately? An in-
sightful approach to answer this question is through the prin-
ciple of description complexity1 [7]. Suppose h represents the
underlying echo paths between the loudspeakers and a micro-
phone in a room. For example, Figure 1, depicts three im-
pulse responses from three loudspeakers to a microphone in
a typical medium-size conference room. Let h be the vector
concatenation of these impulse responses. Suppose M is a
model for the space of echo paths. Intuitively, a model could
be any regularity that is common among the echo paths. For
example, it can be seen in Figure 1 that all the depicted im-
pulse responses decay after a 50 ms period. They all have
similar timings between the first direct arrivals and the the
first reflections. Using the principle of two-part code [7], for
a model, M, the complexity of description of h, or intuitively
the information required to specify h, is described by

C(M) + C(h|M). (1)

Here, C(M) denotes the description complexity of M and
C(h|M) is the description complexity of h whenM is known.
If the echo control knows M, it needs the additional informa-
tion C(h|M) to identify h. Thus, if M is such that C(h|M)
is sufficiently small, then h can be identified without uncor-
relating the excitation signals. In this regard, two main ques-
tions are: 1) Does such a model exist? 2) How can an algo-
rithm learn it?

1A precise definition of description complexity is beyond the scope of
this paper. Here, the notion is used to provide a high level intuition on model
learning.
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Fig. 1. Impulse responses from (a) Loudspeaker 1, (b) Loudspeaker 2, (c) Loudspeaker 3 to microphone. The results are
obtained by exciting the system using independent white Gaussian noise sources.

While we do not have an answer for the first question, we
attempt to answer the latter one. We introduce an algorithm
that tackles the non-uniqueness problem by learning a model
of the room. A key attribute of the non-uniqueness problem is
the large number of unknown parameters. These parameters,
however, are not necessarily independent. Recently, methods
have been proposed to extract a dependence model among pa-
rameters and reduce the number of independent unknown pa-
rameters. Such methods have been studied under the umbrella
of manifold modeling [8]. In simple terms, a manifold is a
space in which every point has an open neighborhood which
resembles a a Euclidean space, with a dimension no larger
than the dimension of the space wherein its global structure
lies. The surface of a sphere or a donut are some examples.

Our algorithm is inspired by principle component analy-
sis, the simplest, yet most common linear manifold learning
[8]. The idea is to pursue a basis such that a major portion of
the energy of the impulse responses lies in a small number of
basis vectors. For practical reasons, the algorithm utilizes the
idea by an evolving eccentric ellipsoid that is skewed along
with the principle components. The algorithm learns this el-
lipsoid, dynamically. Upon initialization, it is blind to the
room environment where the model is a ball (or it may have
some preprocessing data to start from an ellipsoid model). As
it interacts with the room, it uses the obtained qualified esti-
mates to gradually transform the ball to an eccentric ellipsoid.

Qualified estimates satisfy two criteria: 1) they correspond
to a new echo path, and 2) they are estimates of the echo paths
with high accuracy and high confidence. The latter is satis-
fied by uncorrelating the excitation signals during the learn-
ing phase. Using the qualified estimates, the algorithm dy-
namically improves the inferred model till it becomes mature.
Once the model is mature, measured by the number of quali-
fied estimates used in inference, the algorithm saves it for the
future use. After this period, the algorithm does not uncorre-
late the excitation signals and relies on the inferred model to
track the changes in the room.

2. SETUP

Assume a sampling frequency of 44.1 KHz and let n denote
the discrete time index. Assume there are M loudspeakers
and M microphones in a room. For the sake of clarity, we
may consider an arbitrary microphone and conduct all the
derivations for this microphone. Hence, throughout the pa-
per, we drop indexing of microphones. At any time instance
n, the room echo path, i.e., acoustic coupling between loud-
speaker i and the microphone is characterized by a vector
hi,n ∈ R

L. In a typical conference room with a reverberation
time of 200 ms, the size of the echo path impulse response is
roughly L ≈ 9000 taps. Figure 1 depicts three impulse re-
sponses from three loudspeakers to a microphone in a typical
medium-size conference room.

For the sake of conciseness in derivations, we define a
concatenated vector

hn = [h1,n, h2,n, . . . , hM,n]

to denote the overall impulse response of the room. Let xi(n)
denote the audio signal played through loudspeaker i. We
define the augmented vector

x(n) = [x1(n), . . . , x1(n − L + 1), . . . ,

xM (n), . . . , xM (n − L + 1)]

to denote the overall excitation signal of the system. Thus,
the recorded signal at the microphone is described by

y(n) = s(n) + h
′
nx(n). (2)

Here, the signal s(n) represents all locally generated audio
signals, i.e., people, audio devices, or noise sources. The sec-
ond term, h′

nx(n), represents the multichannel echo. As peo-
ple and objects in the room move, the acoustic coupling be-
tween loudspeakers and microphone changes. To control the
echo, the system needs to continuously track these changes.
For this purpose, the system works in a block-wise manner.
That is, it takes a new action, ĥm every Nd (“d” refers to



decision) time samples. The decision times are called deci-
sion epochs and indices m = 1, 2, · · · are used to label them.
Correspondingly, the duration between two consecutive deci-
sions, Nd, is called a decision period. Note that each decision
remains the same for any n such that ⌊n/Nd⌋ = m.

Assume there is no double-talk, i.e., s(n) ≈ 0. Then,

fm(ĥm) =

mNd
∑

k=(m−q)Nd+1

|y(k) − ĥ
′
mx(k)|2 (3)

measures the amount of error incurred by deciding to use the
estimate ĥm. Here, q denotes the amount of overlap size
in blocks. There are several factors contributing to how to
choose Nd and q: computational resources, sampling fre-
quency, estimation confidence, non-stationarity of speech sig-
nals, and movements in the room are all important factors. In
practice, a decision period of about 5 ms to 20 ms and an
overlap size of 2 to 4 times the decision period is common.

3. THE ALGORITHM

To find the best estimate for the impulse response, the algo-
rithm seeks to find an estimate ĥm that minimizes fm(ĥm).
Because of the correlation among excitation signals, however,
the algorithm will need to solve a system of normal equations
that is either under-determined or severely ill-conditioned.

To combat this problem, we need to find a model M to
limit the search space. In this regard, principle component
analysis (PCA) is one of the simplest yet most common tech-
niques. Suppose we have a finite set {hθ}θ∈Θ of sample im-
pulse responses of the room. PCA treats the given set as inde-
pendent random samples. It computes the empirical average
and covariance matrix of the set

h̄ =
1

|Θ|

∑

θ

hθ, Λ =
1

|Θ|

∑

θ

(hθ − h̄)(hθ − h̄)′

as an estimate for the mean and covariance of the underly-
ing probability density function. The pair of (h̄, Λ) forms the
model M. The large eigenvectors of Λ determine the prin-
ciple directions in which the model is stretched. By keeping
the directions that the model is stretched and truncating the
directions in which it is condensed the data is compressed.
Let

Λ = [U V ]

[

Σ 0
0 ∆

] [

U ′

V ′

]

denote the singular value decomposition of Λ where Σ is a
d × d diagonal matrix containing the d largest eigenvalues.
The columns of U define a basis for a d-dimensional subspace
that best approximates {hθ − h̄}θ∈Θ. In other words,

Λ(d) = UΣU ′

denote the best d-dimensional approximation for Λ in a mini-
mum mean-square sense. Here, V is the orthogonormal com-
plement of U . That is V ′U = 0. Intuitively, if {hθ} is a good

Table 1. The process of learning the ellipsoid model.

1. Initialization: β−1
0 = ML, h̄0 = 0

Ψ−1
0 = β0EI , Λ−1

0 = EI ,

2. Recursion: At decision epoch m:
- if ĥm−1 is not qualified, then

β−1
m = β−1

m−1, h̄m = h̄m−1,
Λ−1

m = Λ−1
m−1, Ψ−1

m = Ψ−1
m−1

- else
β−1

m = β−1
m−1 + 1, h̄m = (1 − βm)h̄m−1 + βmĥm−1

Ψ−1
m = Ψ−1

m−1 −
Ψ−1

m−1ĥm−1ĥ
′
m−1Ψ

−1
m−1

1 + ĥ′
m−1Ψ

−1
m−1ĥm−1

Λ−1
m = β−1

m

(

Ψ−1
m −

Ψ−1
m h̄mh̄

′
mΨ−1

m

h̄′
mΨ−1

m h̄m − βm

)

3. Termination: if β−1
m = αML for some α > 1

- set h̄ = h̄m and Λ = Λm.
- stop uncorrelation.

representative for all possible impulse responses, we can ex-
pect with high probability that for any impulse response h

V ′(h − h̄) ≈ 0. (4)

Equation (4) defines a affine space (linear manifold) in R
ML

which serves as a model for the space of impulse responses.
Using this model, now we can try to solve for

min
h

fm(h)

subject to V ′(h − h̄) ≈ 0. (5)

In this optimization, we have an additional number of ML −
d (the rank of V ) equations that help to combat the non-
uniqueness problem. If d ≤ L, then the non-uniqueness prob-
lem is completely resolved. In practice, we replace (5) by the
ellipsoid constraint

(h − h̄)′Λ−1(h − h̄) ≤ 1 (6)

that enforces (5) and limits the energy of estimates.

3.1. Model learning

The first time the system is put to use {hθ}θ∈Θ is empty.
Hence, initially the ellipsoid constraint is the Euclidean unit
ball constraint scaled by an energy factor. More precisely, at
decision epoch 0, the constraint is specified by h̄0 = 0 and
Λ0 = 1

E
I where E represents the maximum energy of the

room. Gradually, as time passes, the system obtains quali-
fied estimated impulses responses. Using these estimates, the
algorithm learns the model through a process that is summa-
rized in Table 1.
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Fig. 2. ERLE after the maturity of the model. The decision
period is equivalent to 12 ms.

3.2. Estimating the echo paths

This ellipsoid, specified by the process in Table 1, serves as
a trust region in the search for the next best estimate. Sup-
pose the previous estimate is ĥm−1 and the system is not in
a double-talk situation. To find the next estimate, the algo-
rithms seeks a direction p such that

min
p

fm(p + ĥm−1)

subject to ‖p + ĥm−1 − h̄m‖2
Λ−1

m

≤ 1

Solving this problem for p, we obtain

(∇2fm(ĥm−1) + λΛ−1
m )pm = −∇fm(ĥm−1)

− λΛ−1
m (ĥm−1 − h̄m)

where λ is the Lagrange multiplier. To be robust, the algo-
rithm takes µm ≪ 1 as the learning factor and computes

ĥm = ĥm−1 + µmpm (7)

as the estimate for decision epoch m. In the current develop-
ment, the algorithm has µm = O( 1

m−mo

) where mo denotes
the decision epoch corresponding to the last major change in
the impulse response.

4. NUMERICAL RESULTS

To demonstrate the convergence performance of the algorithm,
we use the commonly used criterion echo-return loss enhance-
ment (ERLE). Figure 2 plots the ERLE (lower bound) for all
three microphones in a 3 × 3 audio setup. The excitation sig-
nals are spatial recordings of a single speech source. The
excitation signals are played through the three loudspeakers
with no uncorrelation. The results are shown after the model
matures for a filter length of 7040 taps. The algorithm runs
real-time on a software platform taking 60% of a Xeon 3.4
GHz. The floor levels and high variation seen in the plots are
due to the background noise and speech signal variations.

5. CONCLUSION

We presented a multichannel echo control algorithm that com-
bats the non-uniqueness problem by learning a model of the
room. The model is a low dimensional linear manifold that
contains the principle components of the echo paths. In tested
practical setups, the algorithm demonstrated high stability and
accuracy without uncorrelating the excitation signals, hence,
preserving the audio quality.

Drafting this paper, we had two questions in mind: 1)
Does there exist a model that can completely solve the non-
uniqueness problem? 2) How can such a model be learned?
We did not answer the first question and it remains open to
future research. However, we attempted to answer the latter
question by introducing a methodology of model learning in
echo control. In this regard, learning the model via princi-
ple component analysis (PCA) was chosen due to its simplic-
ity to implement and to demonstrate the concept. While the
observed performance demonstrates high stability and accu-
racy, this does not necessarily mean the model solves the non-
uniqueness problem in its pure mathematical terms. A better
model for the space of echo paths may be a nonlinear mani-
fold that should be approximated with the more sophisticated
techniques of manifold learning.
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