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ABSTRACT

Existing adaptive algorithms for blind SIMO system iden-

tification are implicitly derived for real signals. In this

paper, we extend the multichannel LMS algorithm to the

complex case. This is useful, for example, in multirate

implementations of the algorithms where the subband sig-

nals are usually complex. With this algorithm, the chan-

nels are identified correctly up to a complex multiplicative

factor resulting in magnitude and phase ambiguity. The

complications arising due to this phase ambiguity are dis-

cussed and simulation results are presented to demonstrate

and to validate the performance of the complex multichan-

nel LMS algorithm.

1. INTRODUCTION

A class of adaptive algorithms for blind identification of

SIMO systems has been proposed with implementations

both in the time domain [1] and in the frequency do-

main [2]. In the derivation of these algorithms, it is im-

plicitly assumed that both the signals and the unknown

systems are real valued. However, in some cases there

is a need for complex adaptive filters. Such cases include

blind system identification in subbands where the subband

signals may be complex [3] and in particular for oversam-

pled filter banks with an arbitrary oversampling factor [4].

There are also other applications of interest in, for exam-

ple, communications [5, 6].

The advantages of oversampled subbands have been

demonstrated for acoustic echo cancellation and the abil-

ity to implement blind adaptive system identification algo-

rithms in subbands would be of great interest for speech

dereverberation as was shown by Gannot and Moonen [7]

for a subspace solution with real subband signals. How-

ever, to achieve this goal there are several issues to con-

sider: i) implementation of complex adaptive blind chan-

nel identification algorithms, ii) the problem of determin-

ing the filter order in the subband equivalent filters and iii)

the gain ambiguity inherent in blind system identification.

In this paper, we address the first of these issues. We

adopt the approach by Widrow et al in [8] for the deriva-

tion of the complex LMS adaptive algorithm and extend

Figure 1: System diagram for multichannel adaptive blind

system identification based on the cross-relation between

channels for M = 2 sensors.

the work by Huang and Benesty in [1] to derive the com-

plex Multichannel LMS (MCLMS) algorithm for blind

adaptive identification of SIMO systems. As in the case of

real signals and systems, the unknown impulse responses

are identified up to an arbitrary constant factor. However,

this factor is now a complex number, which introduces an

arbitrary magnitude and phase ambiguity in the identified

channel coefficients. The implications of the phase ambi-

guity are discussed.

The remainder of this paper is organised as follows.

The general problem of blind SIMO system identifica-

tion is formulated in Section 2. The Complex MCLMS

is derived in Section 3 followed by a discussion in Sec-

tion 4 regarding the issues arising from the arbitrary com-

plex factor. In Section 5 simulation results demonstrate

the performance of the algorithm and finally, in Section 6,

conclusions are drawn.

2. PROBLEM FORMULATION

In a SIMO system, a signal s(n) is observed in a noisy

multipath environment by an array of sensors at a distance

from the source. The signal received at the lth sensor is

xl(n) = h
T
l s(n) + νl(n), (1)

where hl = [hl,0 hl,1 . . . hl,L−1]
T is the L-tap impulse

response of the channel between the source and the lth

sensor, s(n) = [s(n) s(n − 1) . . . s(n − L + 1)]T is the

source signal vector and νl(n) is measurement noise at the
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lth sensor. It is assumed that the signals and the channel

coefficients are complex variables.

The aim of a blind channel identification algorithm

is to form an estimate ĥl = [ĥl,0 ĥl,1 . . . ĥl,L−1]
T of

the impulse responses hl, using only the observations

xl(n), l = 1, 2, . . . , M . This is possible provided that the

following identifiability conditions are satisfied [9]: i) the

channels do not share any common zeros and ii) the auto-

correlation matrix of the source signal is of full rank.

3. THE COMPLEX MULTICHANNEL LMS

The multichannel LMS algorithm proposed in [1] is based

on the cross-relation between two channels [1, 9] x1∗h2 =
s ∗ h1 ∗ h2 = x2 ∗ h1, which, in the noise-free case, leads

to the relation

x
T
l (n)hm = x

T
m(n)hl, l, m = 1, 2, . . . , M (2)

where xl(n) = [xl(n) xl(n− 1) . . . xl(n−L + 1)]T is a

vector of observation samples at the lth sensor at time n.

As in the case of real signals [1], in the presence of noise

a complex error function can be defined

elm(n) = x
T
l (n)ĥm − x

T
m(n)ĥl

= ℜ{elm(n)}+ jℑ{elm(n)}, (3)

where ℜ{·} and ℑ{·} denote real and imaginary compo-

nents respectively. The objective of the complex MCLMS

is to adapt simultaneously both the real and the imaginary

components of ĥ [8] and consequently, a cost function is

formulated as

J(n) =

M−1
∑

l=1

M
∑

m=l+1

elm(n)e∗lm(n)

=

M−1
∑

l=1

M
∑

m=l+1

ℜ{elm(n)}2

+

M−1
∑

l=1

M
∑

m=l+1

ℑ{elm(n)}2, (4)

where [·]∗ denotes complex conjugation.

The optimal estimate of the channels is found by min-

imising J(n) with respect to ĥ,

ĥopt = arg min
ĥ

E{J(n)}, subject to ‖ĥ‖ = 1, (5)

where E{·} is the expectation operator. The unit norm

constraint is introduced to avoid the trivial solution ĥ = 0.

In the case of a channel coefficient vector with complex

entries, the constraint only affects the magnitude of the

solution and not the phase, which will be elaborated on

in Section 4. By enforcing the unit norm constraint at all

times, the normalised cost function can be written

J̃(n) =
J(n)

‖h‖2
. (6)

The LMS adaptive algorithm finds the desired solution

iteratively, where the coefficients are updated according to

the relation [1, 8]

ĥ(n + 1) = ĥ(n) − µ∇J̃(n), (7)

where ∇ is the gradient operator and µ is a positive step-

size. In the case of complex data studied here, the gradient

estimate consists of a real and an imaginary component

∇J̃(n) = ℜ{∇J̃(n)}+ jℑ{∇J̃(n)}. (8)

Next, we evaluate each of these components individ-

ually. The instantaneous gradient estimate at time n with

respect to the real component of the channel vector,ℜ{h},

is

ℜ{∇J̃(n)} =
∂

∂ℜ{h}

(

J(n)

‖h‖2

)

=
1

‖h‖2

[

∂J(n)

∂ℜ{h}
− 2J̃(n)ℜ{h}

]

(9)

where

∂J(n)

∂ℜ{h}
=



















(

∂J(n)
∂ℜ{h1}

)T

(

∂J(n)
∂ℜ{h2}

)T

...
(

∂J(n)
∂ℜ{hM}

)T



















.

Evaluating the partial derivative of J(n) with respect

to the real coefficients of the kth channel only results in

∂J(n)

∂ℜ{hk}
= −

M
∑

l=1

[x∗l (n)eik(n) + xl(n)e∗ik(n)] . (10)

Similarly, the instantaneous gradient estimate at time

n with respect to the imaginary component of the channel

vector, ℑ{h}, is

ℑ{∇J̃(n)} =
∂

∂ℑ{h}

(

J(n)

‖h‖2

)

=
1

‖h‖2

[

∂J(n)

∂ℑ{h}
− 2J̃(n)ℑ{h}

]

(11)

with

∂J(n)

∂ℑ{hk}
= j

M
∑

l=1

x
∗
l (n)eik(n) − xl(n)e∗ik(n). (12)
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We then substitute the results from (9), (10), (11) and

(12) into (8) in order to obtain the instantaneous estimate

of the overall gradient

∇J̃(n) =
1

‖ĥ‖2

[

2R∗(n)ĥ(n) − 2J̃(n)h(n)
]

, (13)

with

R(n) =























∑

l 6=1

Rxlxl
(n) −Rx2x1

(n) · · · −RxMx1
(n)

−Rx1x2
(n)

∑

l 6=2

Rxlxl
(n) · · · −RxMx2

(n)

...
...

. . .
...

−Rx1xM
(n) −Rx2xM

(n) · · ·
∑

l 6=M

Rxlxl
(n)























(14)

where

Rxlxm
(n) = xl(n)xH

m(n) (15)

and ĥ(n) = [ĥT
1 (n) ĥ

T
2 (n) . . . ĥ

T
M (n)]T is a vector of

the concatenated channel estimates at time n.

Finally, substituting (13) into (7) and assuming that

the channel estimates are normalised after each iteration

as in [1], the update equation for the complex MCLMS

algorithm becomes

ĥ(n + 1) =
ĥ(n) − 2µ[R∗(n)ĥ(n) − J(n)ĥ(n)]

‖ĥ(n) − 2µ[R∗(n)ĥ(n) − J(n)ĥ(n)]‖
.

(16)

The result in (16) differs from the result presented in

[1] in that the complex conjugation is applied to the cor-

relation matrix, R. This is also consistent with the result

in [8] where complex conjugation is applied to the input

data vector.

4. EFFECTS OF THE COMPLEX FACTOR

In this section, the effects of the arbitrary factor on the

complex multichannel LMS are formulated and discussed.

As will be demonstrated in Section 5, the algorithm

from (16) correctly identifies the channels up to a con-

stant factor, c as in the real case. However, now this con-

stant is a complex number, c = |c|ejθc with a magnitude

|c| =
√

ℜ{c}2 + ℑ{c}2 and a phase θc = ℑ{ln(c)}.

Therefore, it introduces an arbitrary additive phase ambi-

guity in addition to the gain ambiguity occurring for real

signals [1, 9]. At convergence the ith coefficient of the lth

estimated channel vector is related to the corresponding

true channel coefficient according to

ĥl,i = |c||hl,i|e
j(θh

l
(i)+θc), (17)

Figure 2: Channel zeros of a system of M=3 for Channel 1

(squares), Channel 2 (circles) and Channel 3 (triangles).

where θhl
(i) = ℑ{ln(hl,i)} is the phase of hl,i. This

makes it difficult to use the estimates in, for example,

equalisation where the recovered signal would also have

a phase error. Therefore, it is desirable to compensate for

the additive angle θc. A straightforward approach is to as-

sume knowledge of the phase of one true tap value and

compensate for this.

Moreover, we have found through our experiments

that if the adaptive algorithm is initialised with a vec-

tor whose ith value is set to α = |α|ejθα , such that

ĥ(0) = [0 . . . α . . . 0]T , the algorithm will converge

to a solution where the phase of that same ith value of the

estimated channel is equal to θα. Consequently, a priori

knowledge of the phase of one true tap can be used in the

initialisation of the algorithm to avoid phase errors. Fur-

ther work is required to recover the phase of the channels

from the observations only.

5. SIMULATIONS

We now present simulation results in order to validate the

performance of the proposed algorithm in (16). The Nor-

malised Projection Misalignment (NPM) is chosen as an

evaluation metric and is defined as [1]

NPM(n) = 20 log10

(

‖h− β(n)ĥ(n)‖

‖h‖

)

dB, (18)

with

β(n) =
h

T
ĥ(n)

ĥT (n)ĥ(n)
. (19)

The NPM is a metric which takes into account only

the misalignment and not the scaling factor by projecting

the true solution vector onto the estimate vector [1]. In the
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Figure 3: Cost function trajectory for the Complex

MCLMS and for varying levels of SNR with M = 3 ran-

dom channels of length L = 16.

case of the complex channels considered here, the projec-

tion misalignment discounts both the magnitude and the

phase of the arbitrary complex factor.

For the experiments we used an example system of

M = 3 random complex channels of length L = 16. The

channel zeros are shown in Fig. 2 where squares, circles

and triangles indicate each the three different channels.

It was assured that there are no common zeros between

the channels and the input was complex white Gaussian

noise so as to satisfy the identifiability conditions stated

in Section 2. The SNR was varied between 20 − 50 dB

and the adaptation step-size was set to µ = 10−4.

The trajectories of the cost function for a typical run

and for different noise levels are presented in the plot in

Fig. 3. In Fig. 4 the plot shows the corresponding result in

terms of NPM. It can be seen that the channels are identi-

fied correctly, up to a multiplicative complex factor.

6. CONCLUSIONS

We have derived the complex multichannel LMS algo-
rithm for adaptive blind system identification. This al-
gorithm identifies the unknown system responses up to a
multiplicative complex factor, which leads to an arbitrary
magnitude and phase ambiguity. The phase ambiguity can
be avoided if a priori knowledge of the phase of either
one of the true channel coefficients is available, however,
further work is required to solve this problem blindly. Fi-
nally, simulation results verified the performance of the
algorithm both in terms of the error trajectory and in terms
of normalised projection misalignment.

Figure 4: Normalised projection misalignment for the

Complex MCLMS and for varying levels of SNR with

M = 3 random channels of length L = 16.
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