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ABSTRACT

We propose a sound source separation method that works well
even if there are more sources than mixtures and signals are
recorded in a reverberant room. The proposed method is based
on generalized sparseness, where the number of active sources
is assumed to vary from1 to the number of mixturesM at each
time-frequency point, and the proposedsparseness estimator
estimates the most suitable number of active sources. Approaches
using binary masks assume that only one source is active at each
time-frequency point. However, when more than two sources are
active, separated signals are greatly distorted with musical noise.
The separated signals by the shortest-path algorithm are less dis-
torted than those obtained by binary masks. However, when
there are fewer thanM active sources and noise, the shortest-
path algorithm overestimates the source signal’s value. To over-
come the overestimation and distortion problems, the proposed
method does not fix the number of sources as one orM . In-
stead, those are estimated at each time-frequency point. Exper-
imental results in a room (reverberation time = 100 ms) indi-
cate that NRR (Noise Reduction Ratio) of signals separated by
our proposed method outperform those of binary masks and the
shortest-path algorithm by about 3-5db.

1. INTRODUCTION

Sound source separation is an essential function for com-
munication tools such as hands-free phones that are used
in a noisy environment.
Independent Component Analysis(ICA)[1] is a popular sep-
aration method. However, when there are more sources
than mixtures, ICA cannot separate all of the sources. In
this paper, we propose a separation method of overcom-
plete convolutive mixtures, where there are more sources
than mixtures, and those sources reverberate. The pro-
posed method is based on generalized sparseness, where
the number of active sources is assumed to vary from1 to
the number of mixturesM at each time-frequency point.
Most of conventional methods use the assumption that
there is only one active source[2], or there are as many ac-
tive sources asM [3][4][5] at each time-frequency point.
However, the assumption that the number of active sources
is a fixed number is a problem, because the number of ac-
tive sources varies at each time-frequency point.

Approaches that combine sparseness and a mixing matrix
(or ICA) have been proposed[6][7]. These approaches es-
timate whether the number of active sources is one or two.
Our proposed sparseness estimator estimates whether the
number of active sources is one, two, or...M , even ifM ≥
3.
Furthermore, in the proposed method, the time-averaged
cost function of the sparseness estimator is proposed. This
function is defined on the hypothesis that data points of a
speech signal are correlated.
In this paper a mixing matrix is supposed to be known.
This matrix can be estimated by clustering approach[6].

2. PROBLEM STATEMENTS AND NOTATION

2.1. Mixing process

LetX(f, τ) be the observedM -dimensional vector,A(f)
be the mixing (M × N ) matrix, S(f, τ) be the source
N -dimensional vector, andN(f, τ) be a white Gaussian
noise, wheref is the frequency, andτ is the frame index.
The mixing process is

X(f, τ) = A(f)S(f, τ) + N(f, τ). (1)

2.2. A posteriori probability of the separated signals

We can obtain maximum likelihood values of original sources
as follows:

Ŝ(f, τ) = argmax
S(f,τ)

P (S(f, τ)|X(f, τ),A(f)). (2)

LettingN(f, τ) be a white Gaussian noise and the proba-
bility of S(f, τ) be the uniform Laplacian, the log-posteriori
probability ofS(f, τ) is

log P (S(f, τ)|X(f, τ),A(f)) =

− α‖A(f)S(f, τ)−X(f, τ)‖2 − ‖S(f, τ)‖1,
(3)

whereα ∝ 1
σ2 , σ2 is the variance ofN(f, τ), the second

term is thel1-norm in this paper.S(f, τ) which maxi-
mizes equation 3 cannot be obtained straightforwardly.
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2.3. Conventional approach: binary masks

When only one source is active at each time-frequency
point, the active source’s indexî and estimated valuês(f, τ)
are obtained as follows:

{̂i, ŝ(f, τ)} = argmin
i,s(f,τ)

‖ai(f)s(f, τ)−X(f, τ)‖2 (4)

, wherel1-norm is regarded as constant at a time-frequency
point, andai(f) is thei-th column ofA(f).
When more than two sources are active, the separated sig-
nals by binary masks are greatly distorted with musical
noise.

2.4. Conventional approach:l1-norm minimization

l1-norm minimization[3] assumes that noise is absent, and
Ŝ(f, τ) can be otained as follows:

Ŝ(f, τ) = argmin
S(f,τ),whereX(f,τ)=A(f)S(f,τ)

‖S(f, τ)‖1.
(5)

S(f, τ) is a complex-valued vector and cannot be obtained
by linear programming. The shortest-path algorithm[3][5]
assumes that there are as many active sources asM and
choosesS(f, τ) that minimizes‖S(f, τ)‖1. However,
when there are less active sources thanM and noise, the
shortest-path algorithm overestimates the source signal’s
value.

3. APPROACH

3.1. Generalized sparseness

Conventional approaches assume that the number of ac-
tive sources is fixed at one orM . However, the number of
active sources varies at each time-frequency point.
If there areL(< M ) sources, separated signals can be ob-
tained as follows:

ŜL,j(f, τ) = argmin
S(f,τ)∈ΩL,j

‖A(f)S(f, τ)−X(f, τ)‖2 (6)

ŜL(f, τ) = argmin
ŜL,j(f,τ)

‖A(f)ŜL,j(f, τ)−X(f, τ)‖2 (7)

, whereΩL is a set ofN -dimensional complex-valued vec-
tors that haveN − L zero-valued elements, andΩL,j is
thejth ΩL’s subset in which the same index elements are
zero valued.ŜL,j(f, τ) can be obtained straightforwardly
as follows:

Ŝ′
L,j(f, τ) = (A′∗(f, τ)A′(f, τ))−1A′∗(f, τ)X(f, τ),

(8)
whereA′(f, τ) is theM ×L matrix in which zero-valued
elements’ mixing vectors ofA(f, τ) are eliminated, and

Figure 1: The shortest-path algorithm’s overestimation
problem: M = 2. a1(f) anda2(f) are mixing vectors.
X(f, τ) is the observed vector.

Ŝ′
L,j(f, τ) is the L-dimensional vector in which zero-

valued elements of̂SL,j(f, τ) are eliminated.
If there areL = M sources, separated signals can be ob-
tained by the shortest-path algorithm.
ΩM containsΩ1, . . . ,ΩM−1. However, when there are
L < M active sources and noise, the shortest-path algo-
rithm overestimates a source signal’s value. This problem
is shown in Fig. 1. Let the first source vector beP1P3,
the second source vector be a zero-valued vector, and the
noise vector beP3P4. Estimations of the source vectors
by the shortest-path algorithm areP1P2 andP2P4. In this
situation,P2P3 of the first source vector is lost and the
second source vector is overestimated. Estimations of the
source vectors by equation 7 areP1P3 and a zero-valued
vector, so the estimation obtained by using equation 7 is
more suitable than the estimation obtained by using the
shortest-path algorithm in this situation.
However, this does not mean that equation 7 is always
more suitable than the shortest-path algorithm. In fig. 1,
when there are two active sources and noise is absent,
the shortest-path algorithm is more suitable than equa-
tion 7. The most suitable model,Lsuitable, at each time-
frequency point is defined as

Lsuitable
def= argmin

L
‖Scorrect(f, τ)− ŜL(f, τ)‖2, (9)

whereScorrect(f, τ) is the correct-valued vector. We also
define the suitable model factor,P (L) , as

P (L) def=

∑
τ

∑
f δ(Lsuitable = L)‖X(f, τ)‖2∑

τ

∑
f ‖X(f, τ)‖2 , (10)

whereδ(true) = 1, δ(false) = 0. If only one model
L(1 ≤ L ≤ M) is always most suitable, onlyP (L) is
non-zero valued. Fig. 2 shows that the most suitableL
varies at each time-frequency point. The proposed method
is based on generalized sparseness, where the number of
active sources is assumed to vary from 1 to the number of
mixturesM at each time-frequency point.
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Figure 2: Suitable model factorP (L): M=4, N=5 case.
“1-source” - “4-sources” are cases L = 1-4 of equation
10.

3.2. Sparseness estimator

We propose a sparseness estimator that estimates the most
suitable estimation of̂SL(f, τ) at each time-frequency point.
The sparseness estimator is based on the hypothesis of
generalized sparseness. The sparseness estimator assumes
that the probability of noise is white Gaussian. In fig. 1,
when ‖P1P2‖ + ‖P2P4‖ > ‖P1P3‖ + α‖P3P4‖2, the
sparseness estimator estimates there is one signal source
and noise, and when‖P1P2‖ + ‖P2P4‖ < ‖P1P3‖ +
α‖P3P4‖2, the sparseness estimator estimates that there
are two sources and noise is absent. Theα is inversely
proportional toσ2. Theσ2 is the variance of noise. This
concept is equivalent to the original MAP concept (equa-
tion 3). However, MAP searches for the most suitable es-
timation over all theN -dimensional complex-valued vec-
tors. Contrary to MAP, the proposed sparseness estimator
searches the most suitable estimation over estimations of
equation 7 and the estimation of the shortest-path algo-
rithm. Therefore, the proposed sparseness estimator can
obtain the solution easily, but MAP cannot obtain solu-
tions without using a recursive algorithm. The computa-
tional cost of MAP is significantly higher than the pro-
posed sparseness estimator. The number of active sources
is estimated as follows:

Lmin = argmin
1≤L≤M

α‖A(f)ŜL(f, τ)−X(f, τ)‖2

+ ‖ŜL(f, τ)‖1.
(11)

Separated signalŝS(f, τ) are

Ŝ(f, τ) = ŜLmin(f, τ). (12)

Figure 3:Recording environment (reverberation time 100
ms).

3.3. Time-averaged cost function

The original definition of MAP has been independently
formulated for each data point. However data points of a
speech source are correlated. We assume that values of
the cost functions of the sparseness estimator also change
slowly. Therefore, we propose a time-averaged cost func-
tion. Equation 7 is replaced as follows.

jmin = argmin
j

k∑

m=−k

γ(m)errL,j(f, τ + m), (13)

where errL,j is ‖A(f)ŜL,j(f, τ) −X(f, τ)‖2 andγ(m)
is the weight vector for time averaging.̂SL(f, τ) is

ŜL(f, τ) = ŜL,jmin(f, τ). (14)

Time-averaging sparseness estimator estimates the suit-
able number of active sources as follows:

Lmin = argmin
L

k∑

m=−k

γ(m)
(
αerrL,jmin

(f, τ)

+ l1L,jmin(f, τ)
)
,

(15)

wherel1L,jmin
(f, τ) is ‖ŜL,jmin

(f, τ)‖1.

4. EXPERIMENT

4.1. Conditions

The performance of the proposed method was evaluated
by a five sources separation problem in a reverberant room
whose reverberation time is 100 ms. There are 4 mixtures.
The recording environment is shown in Fig. 3.
The source signals used for the experiment were Japanese
speech signals that were sampled at 11.025 Hz, and 200
sentences were sent from each direction. The mixing ma-
trix is given in this experiment. The measure of evalua-

tion is NRR= −10 log10

P
t(ŝ(t)−s(t))2P

t(n(t))2 , wheres(t) is the
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source signal,n(t) is the noise signal, and̂s(t) is the sep-
arated signal. High-NRR signals are low-noise signals.

4.2. Results

The experimental results are shown in Table 1.

Table 1: Performance of source separation(the average of
NRRs[db] of 200 sentences): “bin” is the separation al-
gorithm based on equation 4, “two” and “three” are the
algorithms based on equation(7)(L=2,3), “short” is the
shortest-path algorithm, “p1” is the separation algorithm
using the proposed sparseness estimator, and “p2” is the
separation algorithm using the proposed time-averaging
sparseness estimator with optimized parameters,k =
5, γ(0) = 1, γ(±1) = 0.7, γ(±2) = 0.5, γ(±3) =
0.3, γ(±4) = 0.2, γ(±5) = 0.1, andα = 1.43.

bin two three short p1 p2
dir1 12.7 15.2 14.4 12.2 17.4 18.0
dir2 12.8 14.7 11.8 12.0 16.2 16.5
dir3 12.1 14.5 11.6 11.3 15.9 16.3
dir4 13.2 16.2 12.7 13.6 17.0 17.1
dir5 14.0 16.8 13.1 15.0 17.7 17.9

As can be seen, NRRs of the proposed sound source sepa-
ration method using the sparseness estimator outperformed
those of binary masks and the conventional shortest-path
algorithm by about 3-5db. Furthermore, the proposed method
outperformed the methods reported in columns “two” or
“three” . This indicates that the estimation of the most
suitable model at each time-frequency point is effective.
In comparison to “p1” , “p2” gives us higher-NRR sig-
nals. This indicates that time-averaging is also effective.
Examples of separated signals otained by the proposed
time-averaging sparseness estimator are illustrated in Fig.
4.

5. CONCLUSION

We proposed a sound source separation method based on
the generalized sparseness assumption. We have shown
that the proposed method is more effective than the algo-
rithm using binary masks and the conventional shortest-
path algorithm in a reverberant room(reverberation time =
100 ms).
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