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ABSTRACT
In this paper, we propose a new blind spatial subtraction array
(BSSA) which contains an accurate noise estimator based on in-
dependent component analysis (ICA) to realize a noise-robust
hands-free speech recognition. First, a preliminary experiment
suggests that the conventional ICA is proficient in the noise es-
timation rather than the direct speech estimation in real envi-
ronments, where the target speech can be approximated to a
point source but real noises are often not point sources. Sec-
ondly, based on the above-mentioned findings, we propose a new
noise reduction method which is implemented in subtracting the
power spectrum of the estimated noise by ICA from the power
spectrum of noise-contaminated observations. This architecture
provides us with a noise-estimation-error robust speech enhance-
ment which is well applicable to the speech recognition. Finally,
the effectiveness of the proposed BSSA is shown in the speech
recognition experiment.

1. INTRODUCTION

A hands-free speech recognition system is essential for realiz-
ing an intuitive, unconstrained, and stress-free human-machine
interface. In this system, however, it is difficult to achieve a
high recognition accuracy because noise and the reverberation
always deteriorate a target speech quality. One approach to ad-
dress the problem is to separate the observed signals into each
original signal by blind source separation (BSS) technique. BSS
is the approach to estimate the original sources using only in-
formation of the observed signal in each microphone. Basically,
BSS is classified as an unsupervised filtering technique, and does
not require any supervisions on directions-of-arrival (DOAs) and
target-speech pause where only noise exists.
Recently, various methods of BSS based on independent compo-
nent analysis (ICA) [1] have been presented on acoustic-sound
separation [2, 3, 4, 5]. Indeed the conventional ICA could work
especially in speech-speech (or point sources) mixing, but such
a mixing condition is very rare and not realistic; real noises are
often widely-spread sources. In this paper, first, we show a re-
sult of preliminary experiment which tells that ICA is proficient
in the noise estimation rather than the speech estimation when
noise is not a point source. Based on the above-mentioned fact,
then we propose a new blind spatial subtraction array (BSSA)
with an ICA-based noise estimation, which is achieved by sub-
tracting the power spectrum of the estimated noise via ICA from
the power spectrum of the noisy observations. This ”power-
spectrum-domain subtraction” procedure provides a better noise

reduction than the conventional ICA with a estimation-error ro-
bustness. Finally, the real-recording-based simulations are con-
ducted, and we can indicate that the proposed BSSA outperforms
the conventional methods on the improvements in noise reduc-
tion and speech recognition.

2. IS ICA PROFICIENT IN TARGET-SPEECH
ESTIMATION OR NOISE ESTIMATION?

Many previous researches on BSS provided evidences in that the
conventional ICA could work in source separation, especially
for the special case of speech-speech mixing. However, such a
sound mixing is not realistic under common acoustic conditions;
indeed the following scenario and problem are likely to arise (see
Fig. 1).

• The target sound is user’s speech, which can be approx-
imately regarded as apoint source. In addition, the user
locates themselves relativelyclose to the microphone ar-
ray (e.g., 1 m apart), and consequently the accompanying
reflection and reverberation components are small.

• As for the noise, we are often confronted with interfer-
ence sounds which arenot point sourcesbut widely-spread
sources. Also the noise is usually far from the array and
heavily reverberant.

• From the above-mentioned scenario, it is expected that
the conventional ICA can suppress the user’s speech sig-
nal to pick up the noise source, but the ICA is very weak
in picking up target speech itself via suppression of the
far-located widely-spread noise. This is due to the fact
that ICA with the small number of sensors and filter taps
often provides only directional nulls against the undesired
source signals [5].

Figure 2 illustrates a real separation result (noise reduction rate
(NRR) [4] defined in Sect. 4.2) of the conventional ICA obtained
in a preliminary experiment, where the noise’s NRR is calculated
in the case that the cleaner noise is regarded as the target signal.
The experimental conditions are the same as those in Sect. 4.1
except for the number of microphones (=2). This result gives
us an unfortunate conclusion that ICA isnotproficient in target-
speech estimation. However, this also implies that we can still
use ICA as an accurate noise estimator even under reverberant
conditions.
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Figure 1:Directivity pattern which is shaped by ICA.
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Figure 2:NRR-based performance of conventional ICA in envi-
ronment shown in Fig. 4.

3. PROPOSED METHOD

3.1. Motivation and Strategy

The consideration described in the previous section motivates
us to propose a new speech-enhancement strategy, i.e., BSSA.
The proposed method consists of a delay-and-sum array (DS)[6]
based primary path and a reference path for the ICA-based noise
estimation (see Fig. 3). The estimated noise component by ICA
is efficiently subtracted from the primary path in the power-spectrum
domain without phase information. This procedure can yield a
better target-speech enhancement than the simple ICA, even with
a benefit of estimation-error robustness in the speech recognition
application. The detailed signal processing is shown below.

3.2. Partial Speech Enhancement in Primary Path

First, the short-time analysis of observed signals is conducted by
a frame-by-frame discrete Fourier transform (DFT). By plotting
the spectral values in a frequency bin for each microphone in-
put frame by frame, we consider these values as a time series.
Hereafter, we designate the time series as

X(f, τ) = [X1(f, τ), · · · , XJ(f, τ)]T, (1)

wheref is the frequency bin andτ is the frame number. Also,
X(f, τ) can be rewritten as

X(f, τ) = A(f) (S(f, τ) + N(f, τ)) , (2)

S(f, τ) = [0, · · · , 0︸ ︷︷ ︸
U−1

, SU (f, τ), 0, · · · , 0︸ ︷︷ ︸
K−U

]T, (3)

N(f, τ)

= [N1(f,τ),..., NU−1(f,τ),0, NU+1(f, τ),..., NK(f, τ)]T, (4)
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Figure 3:Diagram of proposed BSSA.

whereA(f) is a mixing matrix,S(f, τ) is a target speech signal
vector,N(f, τ) is a noise signal vector,U expresses the target
speech number, andK is the number of sound sources.
Next, the target speech signal is partly enhanced in advance by
DS. This procedure can be given as

Y (f, τ)=W T
DS(f)X(f, τ)

=W T
DS(f)A(f)S(f,τ)

+W T
DS(f)A(f)N(f,τ), (5)

W DS(f)= [W
(DS)
1 (f), . . . , W

(DS)
J (f)]T, (6)

W
(DS)
j (f)=

1

J
exp (−i2π(f/M)fsdj sin θU/c) , (7)

where Y (f, τ) is a primary-path output which a slightly en-
hances target speech,W DS(f) is a filter coefficient vector of
DS [6], M is the DFT size,fs is sampling frequency,dj is a
microphone position, andc is sound velocity. Besides,θU is the
estimated DOA of the target speech which is given by ICA part
in Sect. 3.3. In Eq. (5), the second term in the right-hand side
expresses the remaining noise in the output of the primary path.

3.3. ICA-Based Noise Estimation in Reference Path

The proposed BSSA provides ICA-based noise estimation. In
ICA, we perform signal separation using the complex valued un-
mixing matrixW ICA(f), so that the output signalsO(f, τ) =
[O1(f, τ), . . . , OJ(f, τ)]T become mutually independent; this
procedure can be represented by

O(f, τ) = W (f)X(f, τ), (8)

W (f) = P (f)W ICA(f), (9)

whereP (f) is a permutation matrix andW (f) is a new unmix-
ing matrix which resolves the permutation problem. The permu-
tation matrixP (f) is determined by looking at null directions in
the directivity pattern which is shaped byW ICA(f) [4], so that
theU -th outputOU (f, τ) is set to the target speech signal. At
the same time, we can estimate DOAs, and we designate DOA
of the target speech signal asθU . The optimalW ICA(f) is ob-
tained by the following iterative updating equation [2]:

W
[i+1]
ICA (f)=µ

[
I − ⟨Φ (O(f, τ)) OH(f, τ)⟩τ

]
W

[i]
ICA(f)

+W
[i]
ICA(f), (10)

whereµ is the step-size parameter,[i] is used to express the value
of the i-th step in the iterations, andI is an identity matrix.
Besides,⟨·⟩τ denotes a time-averaging operator,MH denotes
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hermitian transpose of matrixM , andΦ(·) is the appropriate
nonlinear vector function [4].In the reference path, target sig-
nal is not required because we want to estimate only the noise
component. Accordingly we remove the separated speech com-
ponentOU (f, τ) from ICA outputsO(f, τ), and construct the
following “noise-only vector”,Q(f, τ);

Q(f, τ)

= [O1(f,τ), ..., OU−1(f,τ), 0, OU+1(f,τ), ..., OJ(f,τ)]T .(11)

Next, we apply the projection back (PB) [3] method to remove
the ambiguity of amplitude. This procedure can be represented
as

E(f, τ) = W +(f)Q(f, τ), (12)

whereM+ denotes Moore-Penrose pseudo inverse matrix of
M . Here, Q(f, τ) is composed of only noise components.
Therefore,E(f, τ) is a good estimation of the received noise
signals at the microphone positions;

E(f, τ) ≃ A(f)N(f, τ). (13)

Finally, we obtain the estimated noise signalZ(f, τ) by per-
forming DS as follows:

Z(f, τ) = W T
DS(f)E(f, τ) ≃ W T

DS(f)A(f)N(f, τ). (14)

Equation (14) is expected to be equal to the noise term of Eq. (5)
in the primary path. Of course, Eq. (14) contains estimation
errors to some extent. Even though the level of the noise es-
timation error is not negligible, we can still enhance the target
speech via over-subtraction[8] in the power-spectrum domain.
Note thatZ(f, τ) is the function of the frame numberτ , unlike
the constant noise prototype estimated in the traditional spectral
subtraction method [8]. Therefore, the proposed BSSA can deal
with non-stationarynoise.

3.4. Noise Reduction Processing
The proposed BSSA includes mel-scale filter bank analysis, and
directly outputs mel-frequency cepstrum coefficient (MFCC) [7].
The triangular windowWmel(k; l) (l = 1, · · · , L) to perform
mel-scale filter bank analysis is designated as

Wmel(f ; l) =


f − flo(l)

fc(l) − flo(l)

(
flo(l)≤f≤fc(l)

)
,

fhi(l) − f

fhi(l) − fc(l)

(
fc(l)≤f≤fhi(l)

)
,

(15)

whereflo(l), fc(l), andfhi(l) are the lower, center, and higher
frequency bins of each triangle window, respectively. Further-
more,L is the dimension of mel-scale filter bank. They satisfy
the relation among adjacent windows as

fc(l) = fhi(l − 1) = flo(l + 1). (16)

Moreover,fc(l) is arranged in regular intervals on mel-frequency
domain. Mel-scale frequencyMelfc(l) for fc(l) is calculated as

Melfc(l) = 2595 log10{1 + kc(l)fs/(700·M)}. (17)

In the proposed BSSA, noise reduction is carried out by subtract-
ing the estimated noise power spectrum (Eq. (14)) from the en-
hanced target speech power spectrum (Eq. (5)) in the mel-scale

filter bank domain. This procedure is defined as follows:

m(l, τ) =



fhi(l)∑
f=flo(l)

Wmel(f ; l){|Y (f, τ)|2 − β · |Z(f, τ)|2}
1
2

( if |Y (f, τ)|2 − β · |Z(f, τ)|2 ≥ 0 ),
fhi(l)∑

f=flo(l)

Wmel(f ; l){γ · |Y (f, τ)|} (otherwise),

(18)
wherem(l, τ) is the output from the mel-scale filter bank,Y (f, τ)
is the output signal from the primary path, i.e., the partially en-
hanced speech signal, andZ(f, τ) is the output signal from the
reference path, i.e., the estimated noise signal.
The system switches in two equations depending on the condi-
tions in Eq. (18). If the calculated noise components by ICA
(Eq. (14)) are underestimated, i.e.,|Y (f, τ)|2 > β|Z(f, τ)|2,
the resultant outputm(l, τ) corresponds to the power-spectrum-
domain subtraction among primary and reference paths with the
over-subtraction parameter ofβ. On the other hand, if the noise
components are overestimated in ICA, the resultant outputm(l, τ)
is floored with a small positive value to avoid the negative-valued
unrealistic spectrum. Theseover-subtractionandflooringproce-
dures promise us an error-robust speech enhancement in the pro-
posed BSSA rather than a simple linear subtraction. Although
the nonlinear processing in Eq. (18) often generates an artificial
distortion, the so calledmusical noise, it is still applicable in a
speech recognition system because the speech decoder is not so
sensitive to such a distortion.
Moreover, the proposed BSSA is performed in the mel-scale fil-
ter bank domain, so that transformation into MFCC can be easily
performed as

MFCC(n,τ)=

√
2

L

L∑
l=1

log
{
m(l,τ)

}
cos

{(
l− 1

2

)
nπ

L

}
, (19)

wheren denotes the dimension of MFCC. The proposed BSSA
doesn’t require transformation into the time-domain waveform.

4. EXPERIMENTS AND RESULT

4.1. Experimental Setup

Figure 4 shows a layout of the reverberant room used in our ex-
periments. We used the following 16 kHz sampled signals as test
data; the original speech convoluted with the impulse responses
recorded in the real environment, and added with a cleaner noise
which was recored in the real environment. The cleaner noise is
not a point source but consists of several non-stationary noises
emitted from, e.g., a motor, air duct and nozzle. The input signal-
to-noise ratio (SNR) is set to 5, 10, or 15 dB at the array. A four-
element array with the interelement spacing of 2 cm is used, and
DFT size is 512. Over-subtraction paramaeterβ is 1.4 and floor-
ing coefficientγ is 0.2.

4.2. Results of Noise Reduction Performance

We compared DS, the conventional ICA, and the proposed BSSA
on the basis of NRR [4], which is defined as the output SNR in
dB minus the input SNR in dB. In this experiment, we used 6
speakers (6 sentences) as original speech. Figure 5 shows av-
erage of the NRRs for each method. From this result, we can
confirm that the NRR of the proposed BSSA overtakes those of
DS and ICA by more than 4 dB. This indicates that the proposed
BSSA is beneficial to realistic noise reduction applications.
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Table 1:Conditions for speech recognition

Database JNAS [9], 306 speakers (150
sentences / 1 speaker)

Task 20 k newspaper dictation
Acoustic model phonetic tied mixture

(PTM) [9], clean model
Number of training speakers
for acoustic model

260 speakers (150 sentences
/ 1 speaker)

Decoder JULIUS [9] ver 3.5.1

1.0 m

1.5 m

40o

Loudspeaker (Height: 1.5 m)

Cleaner (on the ground)

Microphones
 (Height: 1.5 m)

0.9 m2.4 m

4.2 m

3.
5 

m

Reverberation time : 200 ms

Figure 4:Layout of reverberant room used in our experiment.

4.3. Results of Speech Recognition Performance

We compared DS, the conventional ICA, the conventional single-
channel spectral subtraction [8] cascaded with the ICA (ICA+SS),
and the proposed BSSA on the basis of word accuracy scores.
Table 1 shows the conditions for speech recognition, and we
used 46 speakers (200 sentences) as original speech.
Figure 6 shows the word accuracy in each method. Here, “Un-
processed” refers to the result without any noise reduction pro-
cessing. From this result, we can see that the word accuracy of
the proposed BSSA is obviously superior to those of the conven-
tional methods. It should be mentioned that the proposed BSSA
can still outperform the simple combination of existing ICA and
SS. This is a promising evidence that the proposed BSSA has an
applicability to noise-robust speech recognition.

5. CONCLUSIONS

In this paper, we proposed a new BSSA which involves ICA-
based noise estimation to realize a robust hands-free speech recog-
nition in noisy environments. First, a preliminary experiment
pointed out the fact that ICA is proficient in the noise estima-
tion when noise is not a point source. Secondly, based on the
above-mentioned findings, we proposed a new noise reduction
strategy which is achieved by subtracting the power spectrum
of the estimated noise via ICA from the power spectrum of the
noisy observations. Finally, it was confirmed that the word ac-
curacy of the proposed BSSA overtook those of DS, ICA and
ICA+SS in the experiment.

Noise Reduction Rate [dB]
2 4 6 8 10 12 14

DS ICA Proposed BSSA

0

Figure 5:Results of noise reduction rate in each method.
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Figure 6:Results of word accuracy in each method.
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