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ABSTRACT

We present a robust voice activity detection (VAD) algo-
rithm which is based on the statistics of the coefficients of
the discrete Fourier transform (DFT) derived from short
signal segments. This algorithm uses a common para-
metric noise probability density function (PDF) in all fre-
quency bins. The noise model is based on a Rayleigh in-
verse Gaussian distribution and adapted to the statistics of
the noise during speech-absence. As only the current and
past signal frames are analysed, the detection is causal and
no additional delay is introduced. A framework for pro-
tecting low energy syllables at the end of utterances is also
described.

1. INTRODUCTION

The detection of speech presence is crucial for many algo-
rithms for speech enhancement or speech recognition. For
framewise processing these algorithms can be optimised
if knowledge of speech presence is available. Using the
VAD decisions these algorithms can use different strate-
gies during speech activity and speech pauses. It is, how-
ever, not a trivial task to design a VAD algorithm such that
it will operate reliably in high levels fo noise, especially
when the noise PDF is non-Gaussian and not known a pri-
ori. There exist different ways to increase the robustness
of the VAD in the presence of noise which will be dis-
cussed below.
One well known solution is a likelihood ratio test [1, 2]
in the spectral domain. As this test needs a statistical
model for the sum of the spectral coefficients of speech
and noise, it is not straightforward to incorporate non-
Gaussian models for speech or noise. However, the as-
sumption of a Gaussian noise PDF leads to a high rate of
misclassification of non-speech frames in case of babble
noise or similar non-Gaussian noises.
[3] uses a noise model only and does not rely on the speech
statistics. As a Gaussian model is used for the noise, bab-
ble noise is still difficult to handle with that algorithm.
In [4] the order statistics of subband energies for several
consecutive frames is considered. This approach does not
make explicit use of a probability density model.
In this paper we derive a VAD algorithm which relies only
on a statistical model of non-speech frames as in [3]. A

parametric PDF is used to adapt this model to the noise.
The resulting detection criterion is used in conjunction
with a novel criterion based on frame energies. Like in
[2, 3] we also introduce a finite state machine that helps
to protect low energy syllables at the end of words. In [4]
this kind of protection can be avoided as the detector is
non-causal.
The rest of this paper is organised as follows. In Section
2 an overview of the framewise signal processing in the
spectral domain is given. Section 3 introduces the two
criteria used for speech detection in noisy environments.
The framework for protecting low energy syllables and
reducing the false alarm rate due to single frame detection
errors is described in Section 4. Experimental results are
given in Section 5.

2. SIGNAL PROCESSING IN THE DFT DOMAIN

The observed noisy speech signal y(t), where t ∈ Z is the
discrete time index, is segmented into frames of length
K with a frame shift L = K/2 and weighted by a Hann
window hhann(t). The weighted frames are transformed
by the DFT resulting in the observed spectrum

Y (k, l) =

K−1∑

τ=0

hhann(τ) y(lL + τ) e−j2πkτ/K

= S(k, l) + N(k, l) , (1)

The DFT coefficients Y (k, l) = S(k, l) + N(k, l) of the
noisy signal in frame l ∈ Z and frequency bin k = 0 . . .K−
1 are assumed to be the sum of the clean speech coeffi-
cients S(k, l) and the noise coefficients N(k, l). For the
sake of simplicity we will leave out the frequency and
frame indices, k and l, whenever possible.
For the detection of speech frames we need an estimate
Ŝ of the clean speech spectral coefficients given the noisy
observation Y . This estimate is calculated by the Wiener
filter rule

Ŝ =
ξ̂

1 + ξ̂
Y = G(ξ̂) · Y, (2)

where G denotes the Wiener filter gain and estimated quan-
tities such as the estimated a priori SNR ξ̂ are marked with
the hat symbol.
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The true a priori SNR ξ is defined as ξ = Ps/Pn, where
Ps(k) = E

{
|S(k)|2

}
and Pn(k) = E

{
|N(k)|2

}
are the

speech power and the noise power in frequency bin k, re-
spectively. We use the decision-directed approach [1] to
obtain an estimate ξ̂ of the a priori SNR. The estimate
P̂n of the noise power is calculated as the empirical mean
by recursive averaging during speech pauses. The mean of
|N |2 is an estimator of the noise power Pn that is indepen-
dent of the statistical distribution of |N |2 and is therefore
suitable for different noise types.

3. SPEECH DETECTION CRITERIA

3.1. Outlier count

We now describe a speech detection criterion that solely
relies on knowledge of the statistical behaviour of the a
posteriori SNR γ(k) = |Y (k)|2/P̂n(k) during speech ab-
sence. For each frequency bin k, the observation of γ(k) is
treated as a random variable. These random variables are
assumed to be independent, identically distributed. An
observation γ(k) ≥ γth is called an outlier, whereby a
threshold γth > E {γ} = 1 (speech absence) is chosen.
If the number of outliers in a frame exceeds a threshold,
that frame is very unlikely to contain noise only and the
presence of speech is assumed.
For a frame l we count the number of outliers in a subset
of frequency bins as

n(γth) =
∑

k∈K

[γ(k) ≥ γth] , (3)

whereby the operator [a ≥ b] returns 1, if the statement
is true, otherwise it gives 0. Note that n(γth) is a non-
negative integer. We regard only that subset

K = {kl, kl + ∆k, . . . , kh − ∆k, kh}

of frequency bins where γ significantly changes in the
presence of speech. The lower and upper limit are cho-
sen to give klfs/K ≈ 200Hz and khfs/K ≈ 3.5kHz,
whereby fs is the sampling frequency. As the bins need to
be statistically independent they are chosen at a distance
∆k = 3, which corresponds to the spectral width of the
main lobe of the windowing function hhann(τ).
In the following, we derive the probability of observing a
certain number of outliers in a frame that contains noise
only. For a single frequency bin k the probability P(γth)
to observe γ(k) ≤ γth is given as

P(γth) = Pr{γ < γth} =

γth∫

0

p (γ) dγ. (4)

The PDF p (γ) describes the statistical behaviour of γ in
the case of speech absence and thus depends on the current
noise type. We use a parametric PDF that is adapted at
the beginning of each utterance as explained in Section

3.2. If the number of indices contained in K is N = |K|,
the probability Pr{n(γth) ≥ n0} of observing n0 or more
outliers in a frame in case of speech absence is

Pr{n(γth) ≥ n0} =
∞∑

n=n0

(
N
n

)
(1 − P(γth))

n
(P(γth))

N−n
, (5)

if the random variables γ(k) are statistically independent
for different k.
For speech detection we define the maximum probabil-
ity Pth of observing n0 or more outliers in a non-speech
frame. From this the threshold n0 follows to be the small-
est value that gives

Pr{n(γth) ≥ n0} ≤ Pth. (6)

We decide for speech presence (H1a) in the current frame
in the case of n(γth) ≥ n0, otherwise speech absence
(H0a) is assumed. The first criterion Ha(l) for speech de-
tection in frame l is

Ha(l) =

{
H1a if n(γth) ≥ n0

H0a else
(7)

The parameter Pth thus sets the false alarm rate.

3.2. Statistical model p (γ)

In order to model the statistical behaviour of γ in case
of speech absence a parametrical PDF p (γ) is adapted
within the first K0 frames of an utterance. For the PDF the
Rayleigh-Inverse-Gaussian as introduced in [5] is used. It
is given as

p (γ) =

√
2

π
α

3/2 δ exp(δ|α|)

×
γ

(δ2 + γ2)3/4
K3/2(α

√
δ2 + γ2). (8)

K3/2(·) is the modified Bessel function of the second kind.
The shape parameter α determines the heavy-tailedness
of the distribution and is used here to model the different
noise types. The scale parameter δ is determined by the
variance of γ. α and δ are estimated by the expectation
maximisation algorithm given in [5]. The N · K0 values
γ(k) from the frequency bins k ∈ K of the first K0 frames
are used for this estimate.

3.3. Energy of filtered frames

In the following a second criterion for speech detection
is introduced. Whenever the SNR is small, low energy
spectral components of speech are increasingly covered
by noise. In this case, the detection based on the criterion
in section 3.1 becomes unreliable. In order to check if
speech has been missed in the last frame, the energy of
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Figure 1: The automaton changes states depending on the
framewise decision H(l) from equation (12). The labels of the
states show, whether the current frame is classified as speech (S)
or non-speech (NS). The time ∆t that passed since a state has
been entered is also considered.

the preceeding filtered frame Ef (l− 1) is compared to the
expected frame energyEn(l−1) in case of speech absence.
The frame energies are computed as

Ef (l − 1) =
∑

k∈K

|G(k, l − 1) Y (k, l − 1) |2, (9)

En(l − 1) =
∑

k∈K

|G(k, l − 1) |2 P̂n(k, l − 1) . (10)

Note that these quantities do not reflect true frame ener-
gies as only the subset K is used. As speech energy is
concentrated in bins below kh, the detection becomes eas-
ier, if frequencies above kh are not considered.
The gain function G emphasises frequency bins with high
SNR in the preceeding frames. These bins are likely to
contain speech in frame l − 1. Thus, by using the gain
function G in equations (9) and (10), the sensitivity to
speech components is increased.
We can now define the second detection criterion as

Hb(l) =

{
H1b if Ef (l − 1) > β En(l − 1)
H0b else

. (11)

The factor β > 1 depends on the shape parameter α in or-
der to reflect the variability of frame energies of different
noise types.

3.4. Overall framewise decision

The two decisions (7) and (11) are combined to give the
framewise decision. As the two detection criteria cover
two different types of speech sounds, they are combined
as

H(l) =

{
H1 if Ha(l) = H1a OR Hb(l) = H1b

H0 else
(12)

As the outputs H(l) for different frames are not linked, the
results can change several times within a short time span
in cases of low SNR. In order to adapt the rate of change
in the output of the detector to time constants similar to
those of natural speech, H(l) is embedded in a framework
that is introduced in Section 4.
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Figure 2: Frame energies of the noisy signal (solid thick line)
and of the clean signal contained therein (dash-dotted line). The
noise signal is babble noise at a segmental SNR of 5dB. The
energies are normalised to the maximum frame energy within
the utterance and displayed on a logarithmic scale. Above, the
output of the finite state machine is shown for corresponding
frames.

4. VAD FRAMEWORK

The detection mechanism described in Section 3 decides
on a frame-by-frame basis. In [2] and [3] these decisions
are embedded in a framework in order to prevent clipping
of low energy syllables at the end of words that are not
discovered by the frame-wise detection. This protection
is generally achieved by a grace period that has to pass
before a change in classification from speech frames to
non-speech frames is made. In Figure 1 a finite state ma-
chine is shown that relates the framewise decisions H(l) to
finally classify a frame as speech (S) or non-speech (NS).

In periods of speech absence the automaton is in the left-
most state of Figure 1. A single frame that is classified
as speech (H = H1) does not cause the automaton to sig-
nal speech presence. This compensates for single frame
classification errors and reduces the false alarm rate effec-
tively.

The grace period T2 is only applied after continuous speech
presence has been signaled by H(l) for a minimum dura-
tion T1. If several successive non-speech frames are mis-
classified as speech, the error would be worsened, if the
grace period would be applied immediately.

Figure 2 gives an example of the automaton’s output for
a noisy signal. The noise is highly non-stationary babble
noise at an segmental SNR of 5dB. In frames 150 and 350
the delayed change from output “NS” to “S” is visible. For
applications that do not depend on a causal processing a
one frame look-ahead would reduce this delay. At frames
340 to 350 and 430 to 440 the speech energy is too low to
result in frames that can be distinguished from non-speech
frames. Here the detector profits from the grace period.
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Figure 3: Percentage of speech frames correctly classified (true
hit rate) against percentage of non-speech frames misclassified
as speech (false alarm rate) for pink Gaussian noise at different
segmental SNRs.

5. EXPERIMENTAL RESULTS

For the experimental evaluation a set of 10 utterances from
the TIMIT-database is used. Their sampling rate is fs =
16kHz. The signals are processed in frames of length
K = 512. Each clear utterance is preceeded by more than
2 seconds of silence in order to evaluate the detection in
speech pauses. All frames that have a frame energy of at
most -45dB below the maximum frame energy of the clear
utterance are classified as speech. Speech pauses shorter
than 200ms are also classified as speech as they belong
to the so called structural pauses of speech. The noise
signals are taken from the NOISEX92 database.
The integral resulting from (4) and (8) is solved numer-
ically. For the estimation of the parameters α and δ the
first K0 = 40 frames of the noisy utterance are used. For
the definition of an outlier we choose a threshold γth = 4.
The threshold n0 is found by calculating Pr{n(γth) ≥ n0}
for increasing values of n0 until the condition in equa-
tion (6) is violated. The calculation of n0 in (6) is done
for a range Pth = 0.1% . . . 25% to give different points
of the receiver operator characteristics (ROC). The de-
cision (11) based on the frame energies uses a constant
β = 7. The grace period T2 of the automaton is set to
T2 = 2T1 = 200ms.
For the ROC in Figures 3 and 4 the false alarm rate is de-
fined as the number of non-speech frames misclassified as
speech divided by the total number of non-speech frames.
The true hit rate is the number correctly detected speech
frames divided by the total number of speech frames.
In Figure 3 the ROC is shown for pink noise at different
segmental SNRs. As the detector depends on the three pa-
rameters Pth, β, and T2, the curves do not cover a large
range of possible false alarm rates, if only one of the pa-
rameters is changed. For the case of 20dB segmental SNR
it can be seen that the false alarm rate cannot be reduced
below 2.6% by varying Pth. For high SNR the grace pe-
riod T2 = 200ms covers non-speech frames at the end of
the utterances. Making T2 adaptive would make it possi-
ble to reduce the false alarm rate at high SNR.
The case of babble noise is shown in Figure 4. As the
adaptive PDF p (γ) reflects the changed statistics of this
noise type, the false alarm rate increases only for high val-
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Figure 4: Percentage of speech frames correctly classified (true
hit rate) against percentage of non-speech frames misclassified
as speech (false alarm rate) for babble noise at different segmen-
tal SNRs.

ues of Pth. We found that Pth = 2% is a good compro-
mise.

6. CONCLUSIONS

In this paper we have presented a VAD algorithm based
on two criteria that relies on a statistical model of noise.
Only the statistics of the noise is considered in the form of
the a posteriori SNR in speech pauses. As a second detec-
tion criterion frame energies are considered. A finite state
machine links the framewise decisions to compensate for
single frame decision errors and speech clipping at the end
of words.
In future work a reduction in the false alarm rate in case
of high SNR is attempted by making the grace period T2

adaptive. Using the shape paramter α the factor β in equa-
tion (11) can also be adapted to the variability of the noise.

This work is funded by the German Research Foundation .
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