
DOUBLETALK DETECTION USING REAL TIME RECURRENT LEARNING

1Mohammad Asif Iqbal, 2Jack W. Stokes, 2John C. Platt, 2Arun C. Surendran and 1Steven L. Grant

1ammq2@umr.edu
1University of Missouri-Rolla, Rolla, MO 65409

2Microsoft Research, Redmond, WA 98052

ABSTRACT

In this paper we present a new system for doubletalk detection
that uses multiple signal detectors/discriminators based on recur-
rent networks. The goal is to build a simple system that learns
to combine information from different signal sources to make
robust decisions even under changing noise conditions. In this
paper we use three detectors - two of these are frequency domain
signal detectors, one at the far-end and one at the microphone
channel. The third detector determines the relative level of near-
end speech vs. far-end echo in the microphone signal. The new
doubletalk detector combines information from all these detec-
tors to make its decision. An important part of this proposed
design is that the features used by these detectors can be easily
tracked online in the presence of noise. We compare our results
with cross-correlation based doubletalk detectors to show its ef-
fectiveness.

1. INTRODUCTION

Acoustic echo cancellers (AEC) are an important part of telecon-
ferencing systems - they are necessary to mitigate the deleterious
effect of acoustic feedback from the speaker signal to the micro-
phone input [7]. In an AEC, the echo path is adaptively modelled
using a filter, which is then used to synthesize a replica of the
echo and subtract it from the echo-corrupted microphone signal
[6]. When the near-end talker is active, or when there is no far-
end signal, the filter coefficients will diverge from the true echo
path impulse response; hence it is crucial to have a good dou-
bletalk detector which indicates periods of simultaneous far-end
and near-end speech. During these periods the adaptation of the
filter coefficients is stopped [7].
Doubletalk detection can use statistics computed from both the
microphone and the far-end signal. Typically a cross-correlation
based statistic is used in these scenarios [1]. In addition, some
statistics based on each individual signal may also be computed
which can assist in the detection. In this paper we propose a
machine learning based approach.
In our new approach, we propose to use multiple speech detec-
tors/discriminators (D/D) at various points, and then combine
them for effective doubletalk detection. The system is modular
in nature, so it is extendable to multi-channel scenarios. But in
this paper we demonstrate the idea on a system with a single
microphone channel. In this system, we use three different D/D
units. Two of them are signal detectors and are used to detect the
presence of a signal at the far-end (FESD) and at the near-end
(NESD) as shown in Figure 1. At the near-end, the signal can
be due to near-end speech or due to echo from the far-end talker.

Thus we need a third unit, which is a discriminator - it estimates
the relative influence of far-end echo vs. the near-end speech in
the microphone signal. For lack of a better term, we call this
third unit simply “signal discriminator” (SD). The final part of
our double-talk detector combines the output of all these units to
make robust decision regarding doubletalk.
Since the detectors have to be robust to changing noise condi-
tions, we propose to use SNR dependent features which have
been shown to be effective for speech detection [10], and can be
easily tracked online in the presence of noise.
This paper is structured as follows: In section 2 we present our
method for signal detectors/discriminators and for doubletalk
detection. In section 3 we discuss the experiments and results
which is followed by a summary and conclusion in section 4.

2. SIGNAL DETECTORS/DISCRIMINATORS

One of our primary goals is to make the overall system have low
complexity - this requires that the D/D units themselves to be
very simple. Recently logistic [10] networks were shown to be
very simple and effective for speech detection even in changing
noise conditions. This idea can be easily carried over to detecting
other types of signals in noise.
In our acoustic application, all the signals are influenced by re-
verberation, whose effect typically lasts for hundreds of millisec-
onds; further speech itself is a highly correlated signal. Hence it
is important that our detectors incorporate this long-term effect
in them automatically. One way to achieve this is to take multi-
ple frames of data (spanning the desired time-length of interest)
and use them as inputs to the network. One problem with this
approach is that the correct number to include will depend upon
the situation, and will have to be determined by trial and error.
This also makes the network more complex. Another option is
to use past decisions rather than features. Recurrent networks
[6] are excellent examples of systems that achieve this - they
dynamically re-use information about the state of the network
from the past (these typically constitute the previous outputs of
the network) as inputs to the current decision.
Combining the above two ideas, we propose to use a single layer
network with recurrent feedback (shown in Figure 2). The state
space model of our system can be written as:

x(n) = (1−α)(
N

∑
i=1

wiui)+αx(n−1) (1)

y(n) =
1

1+ exp(−x(n))
(2)

where [u1(n)u2(n) . . .uN−1(n)1] is the current input data and wis
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Figure 1: An AEC system showing various modules of our double-talk detector

and α are the parameters of the system. y(n) is a value between
0 and 1, and hence can be interpreted as a probability.
Since the input features are time-dependent, and arrive one per
time-segment, it is appropriate to train this network continuously
in on-line fashion after every frame of data arrives. This type of
learning is appropriate for a non-stationary signal like speech,
and is called real-time recurrent learning (RTRL) [11]. RTRL
uses stochastic gradient descent to train this network to minimize
the cross-entropy error [2]. This error metric makes the network
discriminative, and provides the maximum likelihood estimate
of the class probability for a wide variety of class conditional
densities of the data [2]. The reason this is useful for us is that,
since the outputs represent probabilities, it is easy for us to make
decisions based on them, or combine their decisions with others.
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{Input: 
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frame
x(1-α)
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z-1

output y(n)
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Figure 2: Recurrent network architecture

2.1. Feature design

One of the desired characteristics of any detector is that its fea-
tures are sufficiently simple, easy to calculate, have discrimi-
natory power and work well under changing noise conditions.
We use estimated posterior SNR χ(k, t) as the feature set for
the NESD and FESD (these have been shown to have all the
above desirable properties [10]). χ(k, t) is the ratio of the en-
ergy in a given time-frequency atom S to the noise energy N
χ(k, t) = |S(k,t)|2

N(k,t) where k, t are the frequency bin and time in-

dices respectively. The FESD uses the speaker signal S as the
target signal, and the NESD uses the microphone signal Y . The
short term spectra of speech are well modelled by log-normal
distributions; hence we use the logarithm of the SNR estimate
rather than the SNR estimate itself. Thus the inputs used are:

χFESD(k, t) = {log |S(k, t)|2− logNFE(k, t)} (3)

and

χNESD(k, t) = {log |Y (k, t)|2− logNNE(k, t)} (4)

where NFE and NNE are the noise energies in frequency bin k and
time-frame t at the far-end and near-end respectively. The noise
power N can be tracked using various algorithms such as [4],[8].
In this paper we use a minima tracker (for each frequency bin we
look back a few frames e.g. 25, and choose the lowest value of
the signal) followed by smoothing, to track the noise floor [8].
We describe the features for the speech discriminator (SD) next.
SD is trying to look at the microphone signal, and it is trying to
figure out how much of it is dominated by the near-end speech
(as opposed to the far-end echo). Thus it is trying to discriminate
the level of near-end speech. Thus for this system we use the
logarithm of the ratio of the microphone instantaneous power Y
to the far-end instantaneous power S for each frequency bin per
frame as the feature i.e.

χSD(k, t) = log |Y (k, t)|2− log |S(k, t)|2. (5)

As can be seen in Figure 3, the extracted features are clearly dis-
tinct for different scenarios. As expected, the extracted features
are typically largest for only the near-end speech, smallest for
the echo-only case, and in between for the case of doubletalk.
Different feature levels correspond to different probability lev-
els; larger features correspond to higher probabilities. For the
echo-only case, the extracted features are always low and inde-
pendent of the echo-path; hence the discriminator performance
is relatively independent of the echo-path. We have verified this
empirically under a wide variety of situations. The decision from
this discriminator is combined with decisions from NESD and
FESD for doubletalk detection. It is probably best to build an-
other learner which combines all these three decisions into one.
In this paper, we use a simple approach (outlined below). In
future works we hope to improve upon this.
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Figure 3: Extracted Features for the SD.

When the NESD and the SD of Figure 1 both indicate a high
probability of the presence of speech, above the selected thresh-
old, we confirm the presence of near-end speech. If the FESD
of Figure 1 indicates the presence of speech and we have a con-
firmed near-end talker, then we declare the current-frame of the
captured signal to be doubletalk. In short, we declare doubletalk
when all the three detectors indicate the presence of speech.

3. EXPERIMENTS AND RESULTS

We use the well known AURORA database [9] for our experi-
ments. The recorded digital speech is sampled at 16 KHz and is
used for the far-end speech s and the near-end speech v of Figure
1. We measured the room impulse response of a 10′× 10′× 8′
room using a stereo system; the truncated 8000 sample (500 ms)
room response is used as the loudspeaker-microphone environ-
ment h in Figure 1. A subset of the Aurora data base was used
for training the FESD of Figure 1, precisely 75 signals (50000
frames) consisting of a mixture of male and female speakers.
These signals were filtered through the left channel of the mea-
sured room impulse response to create the echo part of the micro-
phone signals; near-end speech signals (different signals taken
from the Aurora database) were added to simulate the micro-
phone signals for training the NESD and the SD of Figure 1.
Near-end speech was added at different near-end to far-end ra-
tios to improve training.
For testing we use a completely different set of 120 signals taken
from the Aurora data-base [9] to simulate the far-end speech.
These signals were filtered using the right channel of the mea-
sured room impulse response to simulate a different channel for
testing. To these artificially created echo signals we add near-end
speech from a second different set of 120 signals taken from Au-
rora data-base at 12 different near-end to far-end ratios (NFR).
We thus have ten signals for testing at each NFR ratio where
each signal is approximately 8-10 seconds long.
The true labels on the speech signals were generated by thresh-
olding the energy in each time frame of the clean data; the thresh-
old was selected so that all the speech events were retained,
which was verified by listening to a small fraction of the training
data. To study the performance of the speech detectors we plot
the ROC curves (correct detection of speech versus false alarm).
As can be observed from Figure 4, results are compatible with
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Figure 4: ROC Curve for the FESD, Original curve taken di-
rectly from [10].
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Figure 5: ROC Curve for Detecting NE Speech at Different
NFR.

the speech detector of [10] which was trained with 8 KHz sam-
pled speech. As a result, we confer that the training is done
appropriately for the FESD.
The presence of near-end speech is confirmed when both the
NESD and the SD indicate presence of speech. We combine
both the NESD and the SD and plot the ROC curve in Figure 5
at different values of NFR. At a false alarm rate of 0.1, we detect
the near-end speech with a detection probability of 0.89 at 0 dB
NFR; as expected we detect the near-end speech with a lower
detection rate of 0.7 at -10.5 dB NFR. We can clearly observe
that we have a better detection rate at 0 dB as compared to -10.5
dB NFR as should be the case. The axes are truncated to high-
light the upper left quadrant of the plot. To obtain the thresholds
corresponding to Pf = 0.1 (probability of false alarm = 0.1), we
follow [1]:

1. Set v = 0 (No near-end speech).

2. Select thresholds for all the speech detectors.

3. Compute Pf .

4. Repeat steps 2, 3 over a range of threshold values.

5. Select the thresholds that correspond to Pf = 0.1.
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Figure 6: Pm as function of NFR for doubletalk detectors using
our method, normalized cross-correlation based detector and the
conventional cross-correlation based detector at Pf = 0.1.

These thresholds were used to compute the probability of miss,
Pm , for the test signals. For the ten signals at each NFR, we av-
erage the Pm over the respective signals to calculate the average
probability of miss Pm. For evaluating the new RTRL doubletalk
detector we closely follow [3]. Results are compared with the
new normalized cross-correlation based detector [1] and the con-
ventional cross-correlation based detector [12]. The Pm charac-
teristics of all three methods under the constraint of Pf = 0.1 are
shown in Figure 6. The RTRL doubletalk detector proposed here
clearly outperforms the conventional cross-correlation based de-
tector over a full range of NFR. Our new algorithm outperforms
the normalized cross-correlation based detector for lower values
of NFR and is comparable over the remaining region. It must be
noted that we work with a frame size of 16 ms (256 samples at
16 KHz) whereas the other methods use a frame of size 62.5 ms
(500 samples at 8 KHz).
Next we implement a bi-level architecture by aggregating 4 frames
into a single frame so as to have a frame of duration 64 ms com-
parable to that of the normalized cross-correlation based detec-
tor’s 62.5 ms. We observe in Figure 6, that the RTRL doubletalk
detector outperforms the normalized cross-correlation based de-
tector in almost half of the range of NFR values and is very close
in the remaining region.
The FESD has a detection rate of 0.88 at 15 dB SNR (Figure 4);
thus the RTRL based doubletalk detector is bounded by a miss
probability of 0.1 even at higher NFR values (Figure 6). Typ-
ically in a teleconferencing device such as the Microsoft Ring-
Cam [5] the loudspeaker is located very close to the microphone,
and the near-end talkers are relatively further away from the mi-
crophone. Thus, we typically have low NFR values in such de-
vices. As can be observed from Figure 6, the RTRL based dou-
bletalk detector significantly outperforms the normalized cross-
correlation based detector over such lower NFR values making
it suitable for such applications.

4. CONCLUSION

We have proposed a new doubletalk detector based on a novel
speech discriminator; we significantly outperform the conven-
tional cross-correlation based detector and are comparable to the

normalized cross-correlation based detector.
Echo is a delayed speech signal; typically the spectrum of the
echo is very similar to the spectrum of a speech signal with a
quicker falloff from the maxima. Since we work in the frequency
domain, we observe that the trained coefficients are equally ap-
plicable to any room responses. Similar results were observed
for different room responses and even better results were ob-
served with real data collected using the RingCam project at Mi-
crosoft Research [5]. Based on these observations we conclude
that the trained weights are equally applicable to any room re-
sponses if not independent of room responses.
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