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ABSTRACT

High-fidelity blind source separation (BSS) using Single-Input
Multiple-Output (SIMO)-model-based Independent Component
Analysis (SIMO-ICA) is now being studied by the authors. This
paper describes a comparison of two types of SIMO-ICAs with
different constrains and the conventional methods, and gives ex-
plicit discussion on the sensitivity of the parameters settings in

the methods. In order to discuss the difference, the source-separation

experiments using the mixed binaural sounds are carried out un-
der the same real acoustic conditions. The experiment results
reveal that SIMO-ICA-IG outperforms SIMO-ICA-LS and the
conventional methods, and the parameter setting in SIMO-ICA-
IG does not depend on the source signals’ properties compared
with that of SIMO-ICA-LS.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. In recent works of BSS
based on independent component analysis (ICA), various meth-
ods have been proposed to deal with a means of separation of
acoustic sounds [1], [3]-[5]. However, the conventional ICA-
based BSS approaches are basically means of extracting each of
the independent sound sources as a monaural signal, and con-
sequently they have a serious drawback in that the separated
sounds cannot maintain information about the directivity, local-
ization, or spatial qualities of each sound source. This prevents
any BSS method from being applied to binaural signal process-
ing [2]

Generally speaking, human beings listen to the sounds by their
two ears. These sounds detected at both ears called “binaural
sounds.” This binaural sound involves the information about
the localization, directivity, and spatial qualities of each sound
source. Also, if the several undesired sources exist around the
target sound, we listen to the mixed binaural sound from the
sources, not the binaural sound from the single source. Our
research goal is to realize the audio augmented reality system
which can extract the target binaural sound component of the
mixed binaural sound without the loss of the information about
the spatial qualities. In order to realize this system, we use the
special apparatus, earphone-microphone system, shown in Fig-
ure 1, for picking up the sounds at the entrance of ear canal (cf.
Figure 2). In this system, it is essential to blindly decompose the
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mixed sounds, not into the monaural signals but into the binaural
sounds at ear points.

In order to solve the above-mentioned fundamental problems,
we have recently proposed high-fidelity BSS methods using two
kinds of the Single-Input Multiple-Output (SIMO)-model-based
ICAs, SIMO-ICA with least squares (SIMO-ICA-LS) [6] and
SIMO-ICA with information-geometric learning (SIMO-ICA-
IG) [7]. Here the term ”SIMO” represents the specific trans-
mission system in which the input is a single source signal and
the outputs are its transmitted signals observed at multiple mi-
crophones. The SIMO-ICA consists of multiple ICA parts and
a fidelity controller, and each ICA runs in parallel under the fi-
delity control of the entire separation system. The SIMO-ICA
can separate the mixed signals, not into monaural source signals
but into SIMO-model-based signals from independent sources
as they are at the microphones. Thus the separated signals of
the SIMO-ICA can maintain the spatial qualities of each sound
source.

Our previous works [6, 7] only provided the experimental re-
sults in the simple microphone array’s framework. In this pa-
per, we newly discuss the feasibility and usability of the two
SIMO-ICAs from the point of view of binaural signal separa-
tion. The source-separation experiments using two SIMO-ICAs
and conventional monaural output methods are carried out un-
der the same real acoustic conditions. The experiment results
reveal that SIMO-ICA-IG outperforms SIMO-ICA-LS and con-
ventional methods, and the parameter setting in SIMO-ICA-1G
does not depend on the source signals’ properties compared with
that in SIMO-ICA-LS.

2. MIXING PROCESS

In this study, the number of microphones is K = 2 and the num-
ber of multiple sound sources is L = 2. In general, the observed
signals in which multiple source signals are mixed linearly are
expressed as
N-1
xz(t) = Z a(n)s(t —n) = A(2)s(t),
n=0
where s(t) = [s1(t), s2(t)]" is the source signal vector and
x(t) = [z1(t),z2(t)]T is the observed signal vector. Also,
a(n) = [ari(n)]k is the mixing filter matrix with the length
of IV, and A(z = [Akl(z)]kl = [Zg;ol akl(n)zfn]kl is the z-
transform of a(n), where z~* is used as the unit-delay operator,
i.e, 27" -z(t) = z(t — n), ar; is the impulse response between
the k-th microphone and the I-th sound source, and [X];; de-
notes the matrix which includes the element X in the i-th row
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Figure 1: Detail of the earphone-microphone. This apparatus
picks up the binaural sounds detected at both ears.
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Figure 2: The concept of audio augmented reality which can
reproduce only the target sound. This system aims to extract
the target component of the mixed sounds detected at both ears
without the loss of information about directivity, localization ,
and the spatial qualities of target source.

and the j-th column. The observed signal x(t) is generally rep-
resented as a superposition of the SIMO-model-based signals as

follows:
z(t) = [Au(2)s1(t), -, Ax1(2)s1(t)]"
+ [A12(2)82(t), -+, Aka(2)s2(t)]"

+[Aiz(2)se(t), -, Axr(2)sp ()], (2)

where [A1;(2)si(t), - - , Axi(2)s:(t)] " is aspecific vector which
includes SIMO-model-based signals with respect to the I-th sound
source; the k-th element corresponds to the k-th microphone’s
signal.

3. CONVENTIONAL SEPARATION METHODS
The conventional ICA is basically a means of extracting each
of the independent sound sources as a monaural signal [3, 4].
In addition, the quality of the separated sound cannot be guar-
anteed, i.e., the separated signals can possibly include spectral
distortions because the modified separated signals which con-
volved with arbitrary linear filters are still mutually independent.
Therefore, the conventional ICA has a serious drawback in that
the separated sounds cannot maintain information about the di-
rectivity, localization, or spatial qualities of each sound source.
In order to resolve the problems, particularly for the sound qual-
ity, Matsuoka et al. have proposed a modified ICA based on the
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Minimal Distortion Principle [5]. However, this method is valid
for only monaural outputs, and the fidelity of the output signals
as SIMO-model-based signals cannot be guaranteed.

4. TWO KINDSOF SIMO-ICA ALGORITHMS
In order to solve the above-mentioned fundamental problems,
we have recently proposed SIMO-model-based blind separation
methods using two kinds of SIMO-ICAs, SIMO-ICA-LS and
SIMO-ICA-IG.

4.1. Proposed algorithm1: SIMO-ICA-LS[6]
The SIMO-ICA-LS consists of L ICA parts and a fidelity con-
troller, and each ICA runs in parallel under the fidelity control
of the entire separation system. The separated signals of the I-th
ICA(l=1,---,L)in SIMO-ICA-LS are defined by

D-1

Yaoan(t) = Y wacan(m)z(t —n), ©)]

n=0
where w1cag)(n) is the separation filter matrix in the I-th ICA.
Regarding the fidelity controller, we introduce the following cost
function to be minimized,
C(wacar)(n), -, wacar)(n))

= (I vaoan® -2 =D/ IP), @

1=1
where || || is the Euclidean norm of vector 2. The cost func-
tion Eq. (4) means a degree of similarity between the sum of all
ICA’s output Ele Y(can (t) and the sum of all SIMO compo-
nents [Yr_, Aw(t — D/2)]e1(= a(t — D/2). Here the delay
of D/2 is used to deal with nonminimum phase systems. Using
Eqg. (3) and Eq. (4), we can obtain the unique SIMO solutions,
up to the permutation, as

)
t

Yooy (t) = diag [A(=)PT| Pis(t—D/2), ()
where P; (I =1, ..., L) are exclusively-selected permutation
matrices which satisfy

L
S P=1);. (6)

=1
In order to obtain SIMO-model-based signals, the natural gradi-
ent [1] of Eq. (4) with respect to wica:(n) should be added to
the iterative learning rule of the separation filter. The iterative
algorithm of SIMO-ICA-LS is expressed as

""E];crzlx]l)(")
= wiba,(n) —ad {off-diag <<p(yglcm)(t))
d=0
Yioan(t—n+ d)T>t
L
; D
+B{( Y vlan® — 2t - 3)
=1

'yEJPCAl)(t -n+ d)T>t} : ’UJEJPCA,)(d), )

where o and 3 are the step-size parameters; « is for the control
of the total update quantity and g is for the fidelity control. In
Eq. (7) the updating w1cay)(n) should be simultaneously per-
formed in parallel because each iterative equation is associated
with the others via Zle yE’i]CAn(t)- Also, the initial values of
wcay(n) for all I should be different.
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Figure 3: Example of input and output relations in the proposed SIMO-ICA-IG.

4.2. Proposed algorithm2: SIMO-ICA-IG [7]
The SIMO-ICA-IG consists of an ICA part and a fidelity con-

troller. The separated signals of the [-th ICA (1 =1,--- ,L—1)
in the SIMO-ICA are defined by
Yacay(®) = [y IO ($)]1 = Z w(ica)(n)x(t —n), (8)

where w(iga)(n) is the separatlon fllter matrix of the ICA. Re-
garding the fidelity controller, the following signal vector is cal-
culated, in which all of the elements are to be mutually indepen-

dent, D
Yo ) = 1" O 3) ~ Yaoa)®). (@)

Hereafter, we regard y -, (t) as an output of a virtual ICA, and
define its virtual separation filter matrix as

=x(t—

wre) (n) = Io(n — 0) —waon(m),  (10)
where §(n) is a delta function, where §(0) = 1 and d(n) =
0 (n # 0). From (10), we can rewrite (9) as
D-1
Ywo)(t) = Z wrc)(n)z(t — n). (11)
n=0

The reason why we use the word “virtual” here is that fidelity
controller does not have own separation filters unlike the ICA,
and wgc)(n) is subject to wcay(n). To explicitly show the
meaning of the fidelity controller, (9) is rewritten as

Yaca)(t) + Ywe)(t) —x(t — D/2) = [0 (12)
Equation (12) means a constraint to force the sum of the all
of output vectors y ;o) (t) + Y(rc,)(t) to be the sum of all of
the SIMO components [/, Axi(2)s1(t — D/2)]k1 (= x(t —
D/2)). Here the delay of D/2 is used as to deal with nonmini-
mum phase systems.
If the independent sound sources are separated by (8), and si-
multaneously the signals obtained by (9) are also mutually inde-
pendent, then the output signals converge on unique solutions,

Yaoa () = [A11(2)s1(t —D/2), Asa(2)s2(t —D/2)]7, (13)
Yro)(t) = [A12(2)s2(t —D/2), A21(2)s1(t —D/2)]", (14)

where diag{ X } and off-diag{ X } are the operation for setting
every nondiagonal and diagonal elements of the matrix X to
be zero. The proof of theorem and more details are given in [7].
Equations (13) and (14) represent necessary and sufficient SIMO
components of all source signals.

In order to obtain the above-mentioned solutions, the natural gra-
dient [1] of Kullback-Leibler divergence of (9) with respect to
w1ca)(n) should be added to the iterative learning rule of the
separation filter in the ICA. The iterative algorithm of the ICA
part in SIMO-ICA is given as
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[i+1]
(rpy () =

—a Z [off diag {< (¥ @)

y(ICA) (t—n+d) >t}w(ICA)(d)
—off-diag {<<p yE]F]C)(t))yEJIlC)(t —n+ d)T>t}

(16(a~ %) —wlll @), (15)
where « is the step-size parameter, the superscript [5] is used
to express the value of the j-th step in the iterations, and (-):
denotes the time-averaging operator. In (15), the initial values of
w(ca)(n) and wrc)(n) are arbitrary, but should be different
each other.

w(TD)

5. EXPERIMENTSAND RESULTS
5.1. Conditionsfor Experiments
We carried out binaural-sound-separation experiments using source
signals which are convolved with impulse responses recorded
with a head and torso simulator (HATS) (Briel & Kjeer) in the
experimental room. The reverberation time in this room is 200 ms.
Two speech signals are assumed to arrive from two directions,
—30° and 45°. The distance between HATS and the sound
source is 1.5 m. Two kinds of sentences, spoken by two male
and two female speakers, are used as the original speech sam-
ples. Using these sentences, we obtain 6 combinations. The
sampling frequency is 8 kHz and the length of speech is limited
to 3 seconds. The length of w(n) in each method is 1024, and
the initial values are inverse filters of HRTFs whose directions
of sources are —60° and 60°. The step-size parameters n and «
are 5.0 x 1072 and 1.0 x 10~5. SIMO-model accuracy (SA) [8]
is used as an evaluation score. The SA indicates the degree of
similarity between the outputs of SIMO-ICA and the real SIMO-
model-based signals.

5.2. Resultsand Discussion

In each method, the step-size parameter « is changed from 5.0 x
1078 t0 5.0 x 1078. Also, the balancing parameter 3 is changed
from 1.0x107° t0 1.0x 10~ in MDP-ICA and SIMO-ICA-LS,
and that is changed from 0.1 to 100 in SIMO-ICA-IG.

Figure 4 provides the results of SIMO-model accuracy for each
speaker combination in 2nd-order ICA by Parra, NH-ICA by
Choi, MDP-ICA by Matsuoka, SIMO-ICA-LS, SIMO-ICA-IG,and
SIMO-ICA-IG (8 = 1). As shown in this figure, we can recog-
nize the proposed SIMO-ICA-IG’s superiority to the other meth-
ods.

Figure 5 shows the combinations of optimum step-size parame-
ter and the balancing parameter, which give the best separation
performances, for different speaker combinations in MDP-ICA,
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Figure 4: Results of SIMO-model accuracy for each speaker combination in 2nd-order ICA by Parra, NH-ICA by Choi, MDP-ICA by
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Figure 5: Optimal step-size parameter and balancing parameter for different speaker combinations in (a) MDP-ICA, (b) SIMO-ICA-LS,

and (c) SIMO-ICA-IG.

SIMO-ICA-LS, and SIMO-ICA-IG. From this result, the opti-
mum step-size parameter o among these methods is within the
range between 5.0 x 1078 and 1.0 x 1076.

In Figs. 5 (a) and (b), the optimum balancing parameter 8 in
MDP-ICA and SIMO-ICA-LS is dispersed in the huge range be-
tween 1.0x107* and 1.0x1073,and 1.0x 107 % and 5.0x 10 *.
In Fig. 5 (c), however, the optimum balancing parameter 3 in
SIMO-ICA-IG is within the range between 0.8 to 2.0, i.e., al-
most around 1. From this result, the range of balancing pa-
rameter B in SIMO-ICA-IG is narrower than that in MDP-ICA
and SIMO-ICA-LS, and consequently the parameter setting in
SIMO-ICA-IG does not depend on the source signals’ proper-
ties. In addition, we can mention the attractive feature that 3 in
SIMO-ICA-IG is negligible because the separation performance
of SIMO-ICA-IG with 8 = 1 is almost the same as that of opti-
mal SIMO-ICA-IG (see white bars in Fig. 4).

Overall, the results indicate that the proposed SIMO-ICA-IG
outperforms other methods, and there is no deterioration in per-
formance of SIMO-ICA-IG even if the balancing parameter 3 is
setto 1.

6. CONCLUSION
We discuss and compare SIMO-model-based BSS methods for

audio augmented reality. The experiment results reveal that SIMO-

ICA-IG outperforms SIMO-ICA-LS and conventional methods,
and the parameter setting in SIMO-ICA-1G does not depend on
the source signals’ properties compared with that in SIMO-ICA-
LS. Therefore, we can conclude that the SIMO-ICA-IG is a ro-
buster and easy-to-use algorithm than SIMO-ICA-LS.
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