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ABSTRACT

A new real-time two-stage blind source separation (BSS) for
convolutive mixtures of speech is proposed, in which a Single-
Input Multiple-Output (SIMO)-model-based ICA and binary mask
processing are combined. SIMO-model-based ICA can sepa-
rate the mixed signals, not into monaural source signals but into
SIMO-model-based signals from independent sources as they
are at the microphones. Thus, the separated signals of SIMO-
model-based ICA can maintain the spatial qualities of each sound
source. Owing to the attractive property, binary mask process-
ing can be applied to efficiently remove the residual interference
components after SIMO-model-based ICA. In addition, the per-
formance deterioration due to the latency problem in ICA can
be mitigated by introducing real-time binary mask processing.
The experiments using real-time BSS system reveal that the sep-
aration performance can be considerably improved by using the
proposed method in comparison to the conventional BSS meth-
ods.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. In recent works of BSS
based on independent component analysis (ICA), various meth-
ods have been proposed for acoustic-sound separation [1, 2, 3].
However the separation performance of the existing method heav-
ily degrades especially under highly reverberant conditions. There-
fore the development of high-accuracy BSS in a real-world ap-
plication is a problem demanding prompt attention.
In order to address the problem, we have recently proposed a
novel two-stage BSS algorithm [4] which combines (a) a Single-
Input Multiple-Output (SIMO)-model-based ICA (SIMO-ICA)
[5] and (b) time-frequency domain binary mask processing [6,
7, 8] applied to the SIMO-ICA’s outputs. SIMO-model-based
ICA can decompose the mixed signals into SIMO-model-based
signals from independent sources as they are at the sensors. Af-
ter the SIMO-model-based ICA, the residual components of the
interference can be efficiently removed by the following binary
mask processing.
It should be enhanced that the two-stage method has another im-
portant property, i.e., applicability to the real-time processing. In
general ICA-based BSS methods require huge calculations, but
binary mask processing needs very few computational complex-
ities. Therefore, because of the introduction of binary masking
into ICA, the proposed combination can function as the real-time

system. In this paper, we mainly discuss the real-time implemen-
tation issue on the proposed BSS, and evaluate the “real-time”
separation performance for speech mixtures under a real rever-
berant condition.

2. MIXING PROCESS

The number of microphones is K and the number of multiple
sound sources is L, where we deal with the case of K = L

in this study. On the basis of the time-frequency domain signal
representation, we designate the observed time series as

�
(f, t)

=[X1(f, t), · · · , XK(f, t)]T. The observed signals in which
multiple source signals are mixed are given by�

(f, t) = � (f) � (f, t), (1)

where � (f, t) = [S1(f, t), · · · , SL(f, t)]T is the source signal
vector. Also, � (f) = [Akl(f)]kl is the mixing matrix, where
[X]ij denotes the matrix which includes the element X in the
i-th row and the j-th column. The mixing matrix � (f) is as-
sumed to be complex-valued in a convolutive mixture model
which arises in real audio applications.
In general, the observed signal can be represented as a superpo-
sition of the SIMO-model-based signals as follows:�

(f, t) = [A11(f)S1(f, t), · · · , AK1(f)S1(f, t)]T + · · ·

+[A1L(f)SL(f, t), · · · , AKL(f)SL(f, t)]T, (2)

where [A1l(f)Sl(f, t), · · · , AKl(f)Sl(f, t)]T is a vector which
corresponds to SIMO-model-based signals with respect to the l-
th sound source; the k-th element corresponds to the k-th micro-
phone’s signal.

3. PROPOSED TWO-STAGE BSS

3.1. Overview

In the previous research, SIMO-ICA was proposed by, e.g., Takatani
et al. [5], and they showed that SIMO-ICA can separate the
mixed signals, not into monaural source signals, but into SIMO-
model-based signals at the microphone points. This finding has
motivated us to combine the SIMO-model-based ICA and bi-
nary mask processing. That is, the binary mask technique can be
applied to the SIMO components of each source obtained from
SIMO-ICA. Needless to say, the obtained SIMO components is
well applicable to binary mask processing because of the spatial
properties that the separated SIMO component at the specific mi-
crophone closer to the target sound still maintains the large gain.
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Figure 1: Input and output relations in the proposed two-stage
BSS, where K = L = 2.

The configuration of the proposed method is depicted in Fig. 1.
Binary mask processing which follows SIMO-ICA can remove
the residual component of the interference effectively without
adding huge computational complexities.

3.2. Algorithm

We first conduct a frequency-domain SIMO-ICA (FD-SIMO-
ICA) for extracting the SIMO-model-based signals correspond-
ing to each of sources. The FD-SIMO-ICA consists of (L − 1)
FDICA parts and a fidelity controller, and each ICA runs in
parallel under the fidelity control of the entire separation sys-
tem (see Fig. 1). The separated signals of the l-th ICA (l =
1, · · ·L − 1) in FD-SIMO-ICA are defined by�

(ICAl)(f , t) = [Y
(ICAl)
k (f , t)]k1 = � (ICAl)(f )

�
(f , t), (3)

where � (ICAl)(f) = [W
(ICAl)
ij (f)]ij is the separation filter

matrix in the l-th ICA.
Regarding the fidelity controller, we calculate the following sig-
nal vector

�
(ICAL)(f, t), in which the all elements are to be

mutually independent,�
(ICAL)(f, t) =

�
(f, t) −

L−1�
l=1

�
(ICAl)(f, t). (4)

Hereafter, we regard
�

(ICAL)(f, t) as an output of a virtual
“L-th” ICA. The reason we use the word “virtual” here is that
the L-th ICA does not have own separation filters unlike the
other ICAs, and

�
(ICAL)(f, t) is subject to � (ICAl)(f) (l =

1, · · · , L−1). Transposing the 2nd term (− � L−1
l=1

�
(ICAl)(f, t))

in the right-hand side into the left-hand side, we can show that
(4) means a constraint to force the sum of all ICAs’ output vec-
tors � L

l=1

�
(ICAl)(f, t) to be the sum of all SIMO components

[ � L

l=1 Akl(f)Sl(f, t)]k1 (=
�

(f, t)).
If the independent sound sources are separated by (3), and si-
multaneously the signals obtained by (4) are also mutually inde-
pendent, then the output signals converge on unique solutions,
up to the permutation, as�

(ICAl)(f, t) = diag ��� (f) 	 T
l 
 	 l � (f, t), (5)

where 	 l (l = 1, · · · , L) are exclusively-selected permutation
matrices which satisfy � L

l=1 	 l = [1]ij . Regarding a proof of
this, see [5] with an appropriate modification into the frequency-
domain representation. Obviously the solutions given by (5) pro-
vide necessary and sufficient SIMO components, Akl(f)Sl(f, t),

for each l-th source. Thus, the separated signals of SIMO-ICA
can maintain the spatial qualities of each sound source. For ex-
ample in the case of L = K = 2, one possibility is given by� Y (ICA1)

1 (f, t), Y
(ICA1)
2 (f, t) 
 T

= � A11(f)S1(f, t), A22(f)S2(f, t) 
 T, (6)� Y (ICA2)
1 (f, t), Y

(ICA2)
2 (f, t) 
 T

= � A12(f)S2(f, t), A21(f)S1(f, t) 
 T, (7)

where 	 1 = � and 	 2 = [1]ij − � .
In order to obtain (5), the natural gradient of Kullback-Leibler
divergence of (4) with respect to � (ICAl)(f) should be added
to the existing nonholonomic iterative learning rule [1] of the
separation filter in the l-th ICA (l = 1, · · · , L − 1). The new
iterative algorithm of the l-th ICA part (l = 1, · · · , L − 1) in
FD-SIMO-ICA is given as� [j+1]

(ICAl)(f)

= � [j ]
(ICAl)(f) − α ��
 off-diag � Φ � � [j]

(ICAl)(f, t) �
� [j]

(ICAl)(f, t)H �
t � · � [j ]

(ICAl)(f)

− 
 off-diag � Φ � � (f, t) −

L−1�
l=1

� [j]
(ICAl)(f, t) �

· � � (f, t)−

L−1�
l=1

� [j]

(ICAl)(f, t) � H �
t �

· ��� −
L−1�
l=1

� [j]
(ICAl)(f) ��� , (8)

where α is the step-size parameter, and we define the nonlinear
vector function Φ(·) as [9]:

Φ(
�

(f, t)) ≡ � tanh(|Yl(f, t)|)e·arg(Yl(f,t)) 
 l1
. (9)

Also, the initial values of � (ICAl)(f) for all l should be differ-
ent.
After FD-SIMO-ICA, binary masking processing is applied. For
example in the case of (6) and (7), the resultant output signal
corresponding to the source 1 is obtained as follows:

Ŷ1(f, t) = m1(f, t)Y
(ICA1)
1 (f, t), (10)

where m1(f, t) is the binary mask operation which is defined
as m1(f, t) = 1 if Y

(ICA1)
1 (f, t) is greater than Y

(ICA2)
2 (f, t);

otherwise m1(f, t) = 0. Also, the resultant output signal corre-
sponding to the source 2 is given by

Ŷ2(f, t) = m2(f, t)Y
(ICA1)
2 (f, t), (11)

where m2(f, t) is the binary mask operation which is defined
as m2(f, t) = 1 if Y

(ICA1)
2 (f, t) is greater than Y

(ICA2)
1 (f, t);

otherwise m2(f, t) = 0. The extension to the general case of
L = K > 2 can be easily implemented in the same manner.
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Figure 2: Overview of real-time two-stage BSS system.

3.3. Real-Time Implementation

We have already built a real-time two-stage BSS system using a
small stereo microphone (SONY ECM-DS70P) and a very light
palmtop PC (SONY VAIO type-U with Pentium-M 1.1 GHz
processor, 550 g weight) as shown in Fig. 2. Figure 3 shows
a configuration of a real-time implementation for the proposed
two-stage BSS. Signal processing in this implementation is per-
formed as the following instructions.

1. Inputted signals are converted to time-frequency series by
using frame-by-frame fast Fourier transform (FFT).

2. SIMO-ICA is conducted using a current 3 s-duration data
for estimating the separation matrix which is applied to
the next (not current) 3 s samples. This staggered relation
is due to the fact that the filter update in SIMO-ICA re-
quires huge computational complexities and cannot pro-
vide the optimal separation filter for the current 3 s data.

3. Binary mask processing is applied to the separated signals
obtained by the previous SIMO-ICA. Unlike SIMO-ICA,
binary masking can be conducted just in the current seg-
ment.

4. The output signals from binary mask processing are con-
verted to the resultant time-domain waveforms by using
an inverse FFT.

Although the separation filter update in SIMO-ICA part is not
real-time processing but includes a 3 s latency, the whole two-
stage system still seems real-time because the binary masking
can work in the current segment with no delay. Generally the
latency in the conventional ICAs is problematic and reduces the
applicability of the methods to real-time systems. In the pro-
posed method, however, the performance deterioration due to the
latency problem in SIMO-ICA can be mitigated by introducing
real-time binary mask processing.

4. EXPERIMENTS IN REAL-TIME APPLICATION

4.1. Conditions for Experiments

We carried out real-time sound-separation experiments using acous-
tical source signals recorded in the real room illustrated in Fig. 4,
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Figure 3: Signal flow in real-time implementation of proposed
method.

where two sources and the real-time BSS system (Fig. 2) are set.
The reverberation time in this room is 200 ms. Two acoustic
signals are assumed to arrive from different directions, θ1 and
θ2, where we prepare two kinds of source direction patterns as
follows; (θ1, θ2) = (−60◦, 60◦), or (−60◦, 0◦). We used the
speech signals spoken by two male and two female speakers as
the source samples, and generated 12 speaker combinations. The
sampling frequency is 8 kHz and the length of each speech sam-
ple is limited to 6 seconds. The DFT size of � (f) in each
method is 1024. We use an initial value which is given by null
beamformers [3] whose directions of sources are (−40◦, 40◦).

4.2. Experimental Results

We compare four methods as follows: (A) the conventional binary-
mask-based BSS, (B) the conventional ICA-based BSS [9], (C)
simple combination of the conventional ICA and binary mask
processing, and (D) the proposed two-stage BSS method. Noise
reduction rate (NRR) [3], defined as the output signal-to-noise
ratio (SNR) in dB minus the input SNR in dB, is used as the
objective indication of separation performance. The SNRs are
calculated under the assumption that the speech signal of the un-
desired speaker is regarded as noise.
Figure 5 show an example of the segmental NRR which was cal-
culated along the time axis at every 100 ms period. The first 3 s
duration is spent on the initial filter learning of ICA in the meth-
ods (B), (C) and (D), and thus the valid ICA-based separation
filter is absent here. Therefore, at 0.0 s–3.0 s, we simply applied
binary mask processing in the methods (C) and (D). The suc-
cessive 3 s duration (at 3.0 s–6.0 s) shows the separation results
for open data sample, which is to be evaluated in this experi-
ment. From Fig. 5, we can confirm that the proposed two-stage
BSS (D) outperforms other methods at almost all the time during

 231



  4.8 m 

  5
.0

 m
 

Loudspeakers
(Height: 1.0 m)

(Height: 1.0 m)
  2.0 m 

 2
.0

 m
 

1.0 m θ1 θ2

Stereo
Microphone

Figure 4: Layout of reverberant room used in experiments.
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Figure 5: Example of segmental NRR for male-female separa-
tion at every 100 ms period, where (θ1, θ2) = (−60◦, 0◦).

3.0 s–6.0 s.
In Figure 6, we show the time-averaged NRRs in 3.0 s–6.0 s
for different speaker combinations and different source-direction
patterns. As can be seen, the proposed two-stage BSS can im-
prove the separation performance regardless of the speaker com-
binations as well as source directions, and the proposed BSS
outperforms all of the conventional methods. It is worth noting
that the simple combination of the conventional ICA and binary
mask processing shows heavy deteriorations, and this method is
not beneficial to the improvement. These facts are promising ev-
idences on the feasibility of the proposed combination technique
of SIMO-model-based ICA and binary mask processing.

5. CONCLUSION
We proposed a new BSS framework in which the SIMO-model-
based ICA and binary mask processing are efficiently combined.
Also we introduced the real-time implementation of the pro-
posed method. In order to evaluate its effectiveness, a real-time
BSS experiment was carried out under a reverberant condition.
The experimental results revealed that the SNR can be consider-
ably improved by using the proposed two-stage BSS algorithm.
In addition, we could find the fact that the proposed method out-
performs the simple ICA and binary mask processing.
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