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ABSTRACT 

 
This paper presents study on the approximation of negentropy of 
Time-Frequency Series of Speech (TFSS) using generalized 
Higher Order Statistics (HOS) of the non-quadratic non-linear 
functions in light of their efficient usability in the frequency 
domain blind signal separation algorithms for the separation of 
convolutive mixture of speech. We also propose a new non-
linear function based on the statistical modeling of TFSS by 
exponential power functions.  The results of standard error and 
bias, estimated using sequential delete-one Jackknifing method, 
in the approximation of negentropy of TFSS by different non-
linear functions along with their signal separation performances 
show the superlative power of the exponential power based non-
linear function.    

 
1. INTRODUCTION 

 
The techniques of Blind Signal Separation (BSS) have emerged 
as one of the potential solutions for the extraction or segregation 
of hidden signals only from their observed mixtures [1]. Because 
the method is blind and unsupervised in functioning, it has 
gained wide areas of applicability. In the area of speech signal 
separation it provides one of the feasible solutions for the 
extraction of speech signal from the cacophony of the sounds. 
This has further pivotal implication in the creation of capability 
of steering hearing attention, similar to anthropomorphic ability 
known as Cocktail party effect, in the artificial audition systems. 
The problem of BSS, in general, can be mathematically 
formulated as the estimation of R latent signals 
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versions, 1 2( ) [ ( ), ( )...... ( )]T
Mx n x n x n x n= . The mixed signals are 

produced by some unknown interactions F among them as 
follows  

                          ( ) [ ( )],x n F s n=  (1) 
 
where n is the time index.  The task of BSS is to estimate the 

optimal 1F̂ − , the inverse of the mixing function, so that the 
underlying original sources can be optimally estimated, i.e.  
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 In the simplest case the mixing process F produces 
instantaneous mixture; however, in this paper we will consider 
the case of convolutive mixing.  The Frequency Domain ICA 
(FDICA) works on the Time Frequency Series of Speech (TFSS) 

and separates signals independently in each frequency bin [2]. 
The FDICA algorithms are based on joint or marginal 
distribution of the signal. Our concern in this paper is with the 
FDICA algorithms based on the marginal distribution which 
looks for Independent Component (IC) as the maximally non-
Gaussian components in the mixed signal. One of the most 
successful algorithms in this family is the fixed-point ICA by 
negentropy maximization [3] in which negentropy of the data, 
approximated using generalized Higher Order Statistics (HOS) 
of the non-quadratic non-linear function, is used as a measure of 
non-Gaussianity. In this paper we examine performance of such 
conventional non-quadratic non-linear function for the TFSS and 
propose a new non-linear function based on the approximation 
of Probability Density Function (PDF) of TFSS by the 
Generalized Gaussian Distribution (GGD) function. 
          Rest of this paper is organized as follows. In the section II 
mixing and demixing model is presented. Section III deals with 
fixed point FDICA and approximation of negentropy. Section IV 
deals with the experimental results that is followed by 
conclusions and references. 

 
2. SIGNAL MIXING AND DEMIXING MODELS 

 
In the real recording environment, the speech signal picked-up 
by a linear microphone array is modeled as a linear convolutive 
mixture of the impinging source signals and impulse response 
between source and sensors. Here, we consider the case of two 
microphones and two sources for which the signal mixing and 
demixing models are shown in Fig.1. Accordingly, the observed 
signals x1(n) and x2(n) at the microphones are given by 
 

              1 11 12

2 21 22

( ) +

( ) + ,

x n ref ref

x n ref ref
� � � �

=� � � �
� � � �

 
 
(3) 

where 11 11 1 12 12 2= ( ); = ( );  ref h s n ref h s n⊗ ⊗ 21 21 1 = ( );ref h s n⊗ and 

22 22 2= ( ) ref h s n⊗  are called reference signals and ⊗  represents 

the convolution operation. The FDICA separates the signal in 
 

           
 Fig.1. Convolutive mixing and demixing models for 

speech signal at a linear microphone array.  
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each frequency bin independently, and this separation process in 
any frequency bin f is given by 
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where 1 2 ( ),  ( )
T

Y f Y f� �� �  are TFSS of ICs ; and ( )W f =  separation 

matrix in frequency bin f.  
 

2.  FIXED-POINT FDICA 
 
The fixed-point algorithm for the ICA, known for its faster 
convergence speed, based on the negentropy maximization was 
proposed by Hyverinen for the real valued signals [3]. The 
FDICA algorithms for the separation of convoluted mixture 
work on the complex valued TFSS of the mixed speech data to 
sieve out TFSS of the ICs in each frequency bin. So the 
algorithm proposed in [3] is not directly applicable for FDICA, 
however, extension of the same for complex valued data can be 
applied for FDICA for the speech signal separation [4, 5, 6].  
The functioning of fixed-point ICA algorithm is based on 
Central Limit Theorem (CLT) which states that the mixing of 
plural number of non-Gaussian signals results in increase in the 
Gaussianity of the mixed signal and thus its non-Gaussianization 
can yield independent components. TFSS of mixed signal in any 
frequency bin is superposition of spectral contributions of each 
source. Thus, in the light of CLT, TFSS of mixed speech signal 
in any frequency bin is more Gaussian than that of any 
independent sources. Obviously, non-Gaussianization of TFSS 
can give TFSS of independent sources from which original 
signals can be reconstructed. In the fixed-point ICA the process 
of non-Gaussianization consists of two-steps namely, pre-
whitening or sphering and rotation of the observed signal. 
Sphering is half of the ICA task and gives spatially decorrelated 
signals 1 1( , ) [X ( , ),X ( , )] .Tf t f t f tw w w=X  The whitened signal 
in the fth frequency bin is obtained using Mahalanobis transform 
as follows [7] 
 

                    ( , ) ( ) ( , ),f t Q f f tw =X X  (5) 

 

where   0.5( )Q f Vx x
−= Λ  is called whitening matrix; 

1 2{1 ,1 ,....,1 }x ndiag λ λ λΛ =  is the diagonal matrix with 

positive eigenvalues  
1 1 ........ nλ λ λ> > >  of the covariance 

matrix of ( , )f tX  and  
xV  is the orthogonal matrix consisting of 

their eigenvectors. The whitened signal vector ( , )f twX  is then 

rotated by the separation matrix such that ( ) ( ) ( , )wf W f f t=Y X  
equals independent components. The appropriate separation 
matrix is learned from the whitened data by optimizing some 
cost function used to measure degree of non-Gaussianity. 
 
2.1. Negentropy approximation: 
 
As a measure of non-Gaussianity, negentropy provides better 
performance as explained in [7]. The term negentropy actually 

represents negative of entropy. The negentropy J(y) of the TFSS 
of the random variable y(=Y(f)), is given by  

 
              ( ) ( ) ( ),gaussJ y H y H y= −  (6) 

 
where H(.) is the differential entropy of (.) and gaussy  is the 

Gaussian random variable with the same covariance as of y. This 
definition of negentropy ensures that it will be zero if y  is 
Gaussian and will be increasing if y  is becoming non-Gaussian. 
This implies that it is always positive. Thus negentropy based 
contrast function can be maximized to obtain optimally non-
Gaussian component. However, estimation of true negentropy, as 
in Eq.(6),  is difficult and it requires knowledge of probability 
distribution function of the data. Thus several approximations 
for negentropy estimation have been used and proposed. As a 
very raw, loose and rough approximation, kurtosis has been used 
for it [8]. The other approximation has been based on the 
generalized Higher Order Statistics (HOS) which uses some non-
linear non-quadratic functions G. In  terms of such function  the 
most widely used approximation of negentropy is given by [7] 
     

             2 ,( ) [ { ( ) { ( )}]J y E G y E G ygaussσ= −  (7) 

  
where σ  is a positive constant and gaussy  is a Gaussian random 

variable with same covariace as that of y.  The optimally non-
Gaussian component can be obtained by maximizing Eq.(7) for 

2| |H
wy = w X  as the complex valued samples of TFSS of speech 

spherically symmetric. The one unit algorithm for learning the 
separation vector w (any row of the of the separation matrix 
W(f)  ) is given  by [4,5] 
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where first and 2nd-order derivatives of G(y), have been denoted 
by  g(y)  and g’(y), respectively. 
       The performance of the fixed-point algorithm depends on 
the used non-quadratic non-linear function G. It is desirable that 
the function G should provide robustness toward outlier values 
in the data and should provide better approximation to true 
negentropy. Better robustness to outliers can be ensured by 
choosing G with slow variation with respect to change in data 
and  at the same time very close approximation of negentropy 
can be expected if statistical characteristics of G inherits  PDF of 
the data. The statistically efficient and optimal G that can 
accommodate maximum information about HOS of the data is 
chosen as the function that can minimize trace of the asymptotic 
variance of w  and can be approximated by [7] 
 

              1 log ( )G c p y= , (9) 

 
where  1c  is an arbitrary constant and p(Y) represents PDF of Y. 
Keeping in view these facts many  non-linear functions  have 
been proposed for G. However, for the super-Gaussian signals 
following functions has been recommended [7] and have been 
used in the speech signal separation [ 5, 6] 
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In [9] extensive studies have been made on the PDF of TFSS 
and has been shown that GGD function can provide better 
approximation to PDF of the TFSS signal. The GGD function is 
a parametric function defined in terms of location parameter µ, 
scale parameter α, and shape parameter β. The GGD PDF for a 
random variable z is given by 
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The optimal function 3( )G y  based on the GGD can be obtained 
by using Eq.(12) in Eq. (9)  and is given by 
 

             3 log .G y A
ββα −= +  (13) 

 
3. JACKKNIFE METHOD FOR ERROR 

ESTIMATION  
 
In order to judge the relative suitability of these non-linear 
functions we will evaluate their performances for the negentropy 
approximation and robustness to outliers, and capacity of signal 
separation. The statistical technique of Jackknifing can be used 
to evaluate relative error in the approximation of negentropy and 
robustness to outliers [10]. Jackknife is one of the powerful tools 
for the data partitioning and can be used to estimate bias and 
standard error occurring in the negentropy approximation by 
non-linear functions (  1,2,3)kG for k =  from Jackknife 
replicates. The Jackknife replicates for the negentropy are 
obtained by approximating negentropy of Jackknife samples 
which are created by omitting, in turn, one data sample from the 
original TFSS. Let us consider the TFSS in any frequency bin f 
consisting of U samples. The ith Jackknife replicate for 
negentropy approximation by function kG  is given by   

( ) ( )

([ ( ,1), ( ,2)... ( , 1), ( , 1)... ( , )]),

i
k

k

J f

G y f y f y f i y f i y f U
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and this is carried out independently in each frequency bin for 
each samples. The bias ( )B

kJ f in the negentropy approximation 

by function kG   is given by  
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The standard error in negentropy approximation by kG  is given 
by 
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This represents standard deviation of the Jackknife replication, 
however, it is unbiased due to the presence of factor (N-1)/N 
[11]. Since TFSS in each frequency bin are assumed to be 
independent the above estimates for bias and standard error can 
be averaged over the no. of frequency bins and can be given by 
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         The separation performance of each non-linear functions  
will be judged using the deflationary learning rule given in 
Eq.(8). Obviously that requires first and second order derivatives 
of the non-quadratic functions G which are given by  
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In order to avoid singularity of derivatives of 3( )G y  at y=0, it is 

replaced by very small ( 410− ) number. The parameters of GGD  
are estimated using maximum likelihood approach as is 
described in [9]. 

 
4. EXPERIMENTS AND RESULTS 

 
In the experiment a two element linear microphone array with 
inter-element spacing of 4 cm was used.  Voices of two male and 
two female speakers (sampled at 8kHz) [12], at the distances of 
1.15 meters and from the directions of 30− � and 40�  were used to 
generate 12 combinations of mixed signals x1 and x2 under the 
described convolute mixing model for different Reverberation 
Time (RT), e.g., RT=0 ms, RT=150 ms and RT=300 ms. The 
experiments were carried out in two parts separately for the 
jackknifing and blind separation. The TFSS of the speech data 
were generated by doing P(=512)-point STFT analysis of 
hanning windowed segments of 20 ms with 50% overlapping. In 
order to estimate bias and standard error occurring in negentropy 
approximation by kG  six unmixed speech signals, as in the  
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           Fig. 2.  Averaged SE ( ˆ ( )SE

kJ f ) for different G(y).  
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      Fig. 3.  Normalized bias ( )B

kJ f  for different G(y). 

 
separation algorithm kG  ultimately approximates negentropy of 
the separated signal, from different speakers were used. The bias 
and standard error in the negentropy approximation by each of 

kG were estimated in each frequency bin using Eq.(15) and 
Eq.(17) for sequential delete–one Jackknife method. The 
estimated standard error, averaged for 6 speech signals including 
male and female speakers are compared in Fig.2 for each kG . 

The averaged bias estimate ( )B
kJ f , for different non-linear 

functions are shown in the Fig.3. It is evident from these figures 
that the standard error and bias is minimum for the GGD based 
non-linear function which implies that its robustness and 
closeness to true negentropy of the TFSS signal is better than 
that of G2(y) and G1(y).  The separation performances of the 
fixed-point FDICA with the use of these three non-linearities 
were also studied under different RTs. The stopping criterion for 
algorithms was set at 2| | .0001new oldw wδ = − < . The Noise 
Reduction Rate (NRR), which is defined as the ratio of signal 
power and power of residual interference in the separated 
signals, and no. of iteration taken to converge up to δ  were used 
as the performance measures. The learning rules of Eq.(8) was 
initialized using null-beam former based  value of the separation 
vector [5]. The results of NRR and number of iterations, 
averaged for the combination of 12 pair of mixed speech data are 
shown in Fig.4 and Fig.5 respectively. The value of parameter of 
the GGD function is estimated after each iteration; however, the 
shape parameter was fixed to 0.9β =  following the results 
reported in [9]. It is evident from these figures that there occurs 
no significant difference in the achieved NRR, however, 
significant difference occurs in the number of iterations 
consumed by different non-linear functions. In this respect, the 
GGD based non-linear function outperforms the other two with a 
handsome margin.  
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Fig. 4.  Averaged(for 12 pairs)  NRR for different G(y) under 
different RT.  
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Fig.5. Averaged (for 12 pairs) NRR for different G(y) under 
different RT. 
 

5. COCLUSIONS 
 
It can be concluded that as the GGD function can better 
represent statistical model of TFSS, the GGD based non-linear 
function can incorporates much information about HOS of the 
TFSS. Due to this it provides better results than the conventional 
non-linear functions. It is further needed to explore the 
separation performance of the algorithm for different values  β  
and why separation performances  are poor for higher RTs.  
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