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ABSTRACT

For echo cancelation enhanced by a Post-Filter it is neces-
sary to get a reliable estimate of the (residual) echo power
spectral density (PSD). We describe a method to obtain
the echo PSD by an estimation of the system misalign-
ment. For room impulse responses longer than the DFT-
length a partitioned processing is necessary. Our contri-
bution addresses problems concerning the partitioned cal-
culation of the system misalignment and proposes an al-
gorithm for obtaining the system misalignment by an op-
timal frequency dependent first order recursive smoothing
criteria based on a minimum mean squared error (MMSE)
approach.

1. INTRODUCTION

Acoustic echo cancelation is a common problem, e.g. in
hands-free speaking devices or video conferencing sys-
tems [1]. Post-Filtering is an enhancement-technique for
the conventional AEC-filter [2]. For implementing an acous-
tic echo canceller (AEC) with a Post-Filter it is necessary
to have a reliable estimate of the (residual) echo signal and
its PSD respectively at the output of the echo canceller.
Figure 1 shows a typical hands-free telephony or video-
conferencing system with an AEC. Without any cance-
lation the signal of the far speaker (denoted byX(m, l))
would be picked up by the microphone and transmitted
back. The AEC-filterC(m, l) estimates the room trans-
fer functionH(m, l). The estimated echôΨ(m, l) is sub-
tracted from the microphone signal. Since in general the
length of the room impulse response (RIR) is infinite or at
least much longer than the length of the AEC filter [3, 4],
a residual echoΞ(m, l) = Ψ(m, l) − Ψ̂(m, l) remains in
the microphone signalE(m, l) = Sn(m, l)+Ξ(m, l). All
signals and filter coefficients are used in a partitioned fre-
quency domain manner with a discrete frequency indexm

and a discrete block indexl.

The main drawback of a conventional AEC (a time do-
main NLMS-algorithm, e.g.) is slow convergence during
adaptation periods such as filter initialization or sudden
changes in the RIR. A Post-FilterP (m, l) (designed ac-
cording to the Wiener-rule) permits the application of
shorter AEC-filters. The residual echoΞ(m, l) - which
remains after the AEC - is estimated and attenuated.

Since for the Post-Filter as well as for the AEC it is nec-
essary that the near speaker is absent during adaptation
periods, a double-talk detector has to stop the adaptation
in the case of an active near speaker. This can be done
with the help of minimum statistics [5, 6] or the coher-
ence between loudspeaker- and microphone-channel [7],
e.g.
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Figure 1:Acoustic Echo Canceller (AEC) with Post-Filter.

In section 2 we explain the problems arising from a par-
titioned calculation of the system misalignment. A rule
for finding an optimal smoothing factor for the purpose
of estimating the system misalignment is derived. In sec-
tion 3 we present our simulation result and in section 4 we
summarize our conclusions.
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2. CALCULATION OF THE SYSTEM
MISALIGNMENT

The room transfer functionH(m, l), the AEC-filter
C(m, l), the misalignmentD(m, l), and the signal of the
far speakerX(m, l) are defined as follows:

H(m, l) =
[
H0(m, l) · · · HL′

H
−1(m, l)

]T
(1)

C(m, l) =
[
C0(m, l) · · · CL′

AEC
−1(m, l) 0 · · · 0

]T
(2)

D(m, l) = H(m, l) − C(m, l) (3)

X(m, l) = [X(m, l) · · · X(m, l − L′

H + 1)]
T (4)

LH = L′

HLDFT andLAEC = L′

AECLDFT are the lengths
of the echo path impulse response and the AEC filter, re-
spectively. Since in practical casesLH > LAEC only the
first part ofH(m, l) can be compensated byC(m, l) and
the residual echo is

Ξ(m, l) = D
T (m, l)X(m, l). (5)

For equation (5) and further on we assume an inactive near
speaker (Sn(m, l) = 0). For this case the signal in the
microphone path after the AECE(m, l) only contains the
residual echoΞ(m, l).
For periods of an active near speaker (Sn(m, l) 6= 0) a
double-talk detection algorithm has to stop the adaptation
of the AEC and the Post-Filter.

2.1. Post-Filter Design

With an estimate for the system misalignmentD(m, l),
we obtainΞ(m, l) from (5). A reliable estimate of the
residual echo PSD is essential for the design of the Post-
Filter in order to avoid remaining echoes as well as desired
speech distortions. The Wiener Post-Filter is given with

P (m, l) =
Φ̂SnSn

(m, l)

Φ̂SnSn
(m, l) + Φ̂ΞΞ(m, l)

=
Φ̂EE(m, l) − Φ̂ΞΞ(m, l)

Φ̂EE(m, l)
. (6)

The PSD estimation in (6) can be calculated by the well-
known Welch method [1]. Further difficulties appear when
estimatingD(m, l) at high system orders, e.g. if a video
conferencing system is used in a reverberant environment,
where the RIR might be very long. For this case a parti-
tioned calculation of the system misalignment can be ap-
plied, which will be explained in the next section.

2.2. Partitioned Calculation of the System Misalign-
ment

Figure 2 shows the corresponding system misalignment
impulse responsed(k) in the time-domain. Although the
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Figure 2: System misalignment in time domain. Estima-
tion of system misalignment can be processed in one part
(black) or in blocks (gray).

length of the system misalignment is infinite in general, it
can be assumed to be sufficiently decayed after a length
of LH = 1024. There are two possibilities for calculat-
ing the system misalignment. Either by using a long DFT
lengthLDFT or by investigating an increased number of
partitions at short DFT lengths as illustrated in Figure 2.
Note that an AEC operates at the first 512 samples. Parti-
tioned calculation ofD(m, l) has several advantages, e.g.
a smaller delay in real-time applications or the reduction
of strong loudspeaker-path correlations in multi-channel
environments [2, 8].
For obtainingD(m, l) we define an errorQ(m, l) which
has to be minimized by an MMSE approach. For the rea-
son of readability the frequency- and block-time-depen-
dance is omitted for the next lines.

Q = Ξ − X
T
D

E{Q∗Q} = E
{
|Ξ|2

}
− E

{
D

H
X

∗Ξ
}

−E
{
Ξ∗

X
T
D

}
+ E

{
D

H
X

∗
X

T
D

}

∂E{Q∗Q}

∂D
= −2E{X∗Ξ} + 2E

{
X

∗
X

T
D

}

!
= 0

D = E
{
X

∗
X

T
}−1

E{X∗Ξ}

D(m, l) = R
−1
XX(m, l)ΦXΞ(m, l). (7)

E{·} is the expectation operator.(·)∗ is the conjugate
complex,(·)T the transpose and(·)H the hermitian (the
conjugate transpose).
For the moment let us assume the loudspeaker signal
X(m, l) to be uncorrelated in temporal direction:

E{X∗(m, l − i)X(m, l − k)} = 0, ∀ i 6= k. (8)

With (8) each partition ofD(m, l) can be calculated sep-
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arately.

Di(m, l) =
Φi,XΞ(m, l)

ΦXX(m, l − i)
(9)

Φi,XΞ(m, l) = E{X∗(m, l)Ξ(m, l)} (10)

We rewrite equation (5) as a sum of the vectors’ elements.
L′

D is the number of partitions ofD(m, l).

Ξ(m, l) =

L′

D−1
∑

i=0

Di(m, l) · X(m, l − i) (11)

With (11) we can exemplaryly write for the first partition
of D(m, l)

Φ0,XΞ(m, l)

ΦXX(m, l)
=

E
{

X∗(m, l)
∑L′

D−1
i=0 Di(m, l)X(m, l − i)

}

E{X∗(m, l)X(m, l)}

= D0(m, l) +

∑L′

D−1
i=1 Di(m, l)E{X∗(m, l)X(m, l − i)}

E{X∗(m, l)X(m, l)}
︸ ︷︷ ︸

=0

.

(12)

D0(m, l) will be calculated correctly under the assump-
tion of uncorrelated partitions of the loudspeaker signal
X(m, l) (8).
For practical realization the expectation operators E{·}
have to be replaced by an estimation methodÊ{·} which
causes an additive disturbance.

∑L′

D−1
i=1 Di(m, l)Ê{X∗(m, l)X(m, l − i)}

Ê{X∗(m, l)X(m, l)}
6= 0 (13)

To reduce the variance of the system misalignment esti-
mation a first order smoothing can be applied.

∣
∣
∣D̂0(m, l)

∣
∣
∣

2

= α
∣
∣
∣D̂0(m, l − 1)

∣
∣
∣

2

+(1−α)

∣
∣
∣
∣
∣

Φ̂0,XΞ(m, l)

Φ̂XX(m, l)

∣
∣
∣
∣
∣

2

(14)
Now we try to find an optimal smoothing factorαopt for
a stochastical system̃D0(m, l). With an optimalα the
expectation E{|D̃0(m, l)|2} should converge to the real
system misalignment|D0(m, l)|

2.
The stochastical system misalignment is assumed to be
zero-mean with mutual uncorrelated partitions

E
{

D̃∗

i (m, l)D̃∗

k(m, l)
}

= 0, ∀ i 6= k. (15)

Following [5] we define the MMSE minimization crite-
rion as

(∣
∣
∣D̂0(m, l)

∣
∣
∣

2

− E

{∣
∣
∣D̃0(m, l)

∣
∣
∣

2
})2

!
= min

α
. (16)

Putting (14), (12) and (15) in (16) we get
(∣

∣
∣D̂0(m, l)

∣
∣
∣

2

− E

{∣
∣
∣D̃0(m, l)

∣
∣
∣

2
})2

=

[

α
∣
∣
∣D̂0(m, l − 1)

∣
∣
∣

2

+ (1 − α)
∣
∣
∣E

{

D̃0(m, l)
}

+

∑L′

D−1
i=1 E

{

D̃i(m, l)
}

Ê{X∗(m, l)X(m, l − i)}

Ê{X∗(m, l)X(m, l)}

∣
∣
∣
∣
∣
∣

2

−E

{∣
∣
∣D̃0(m, l)

∣
∣
∣

2
}]2

=

[

α

(∣
∣
∣D̂0(m, l − 1)

∣
∣
∣

2

− E

{∣
∣
∣D̃0(m, l)

∣
∣
∣

2
}

−

L′

D−1
∑

i=1

E

{∣
∣
∣D̃i(m, l)

∣
∣
∣

2
}

Φ̂XX(m, l − i)

Φ̂XX(m, l)





+

L′

D−1
∑

i=1

E

{∣
∣
∣D̃i(m, l)

∣
∣
∣

2
}

Φ̂XX(m, l − i)

Φ̂XX(m, l)





2

. (17)

Deriving (17) with respect toα and setting the result equal
to zero we get the optimal smoothing factor

αopt(m, l) =
1

1 +

∣
∣
∣E

{

|D̃0(m,l)|
2
}

−|D̂0(m,l−1)|
2
∣
∣
∣Φ̂XX(m,l)

∑ L′

D
−1

i=1
E

{

|D̃i(m,l)|
2
}

Φ̂XX(m,l−i)

.

(18)

The factor

∣
∣
∣
∣
E

{∣
∣
∣D̃0(m, l)

∣
∣
∣

2
}

−
∣
∣
∣D̂0(m, l − 1)

∣
∣
∣

2
∣
∣
∣
∣

can be

interpreted as a permitted adaptation speed, because if it
equals zeroα becomes one and the adaptation will be
stopped.
SinceD0(m, l) is not available in practical environments
we define a first suboptimal̃α

α̃(m, l) =
1

1 + C̃·Φ̂XX(m,l)
∑ L′

D
−1

i=1 |D̂i(m,l−1)|
2
Φ̂XX(m,l−i)

(19)

with a constant̃C for
∣
∣
∣E{|D̃0(m, l)|2} − |D̂0(m, l − 1)|2

∣
∣
∣

and the system misalignment of the recent block
|D̂i(m, l − 1)|2 for E{|D̃i(m, l)|2}. As simulations have
shown, typical values for̃C are in the range of0.08 to
0.12 and thus we choosẽC = 0.1. As a further simplifi-
cation every dependence of the system misalignment can
be neglected in (18) and we define

α′(m, l) =
1

1 + C ′
Φ̂XX(m,l)

∑ L′

D
−1

i=1
Φ̂XX(m,l−i)

. (20)

As a reference we take a fixed non frequency dependent
smoothing factorαfixed which we obtain in the from

αfixed = e−
FB
τ·fs (21)
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with the block feedFB , the forgetting timeτ and the sam-
pling frequencyfs.

3. SIMULATION RESULTS

In Figure 3 we see the estimation of the residual echo PSD
which is necessary for the Post-Filter design in (6), e.g.
The solid line is the true PSD.
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Figure 3:Residual echo PSDs with different methods for
smoothing the system misalignment D(m, l)

In the upper part we see the loudspeaker signalx(k) con-
taining the far speaker and the near speakersn(k) in the
time domain. During periods of double-talk the adaptation
of the filters was stopped [6].
As Figure 3a) shows, we meet the real PSD best when
using the optimal smoothing factorαopt(m, l) (18). Us-
ing αfixed from equation (21) for the calculation of the
system misalignment produces an over-estimation of the
residual echo PSD.
Figure 3b) shows the results for the suboptimal smooth-
ing factorsα′(m, l) (dashed line, eq. (20)) and̃α(m, l)
(dotted line, eq. (19)). The residual-echo-PSD is met for
both of them.α′(m, l) shows somewhat better results than

α̃(m, l). The reason for this is in our opinion the substi-
tution of the real system misalignment by its estimation
from the last block. With (20) we present a new smooth-
ing method, which is robust and straight forward to imple-
ment.

4. CONCLUSIONS

We presented an optimal frequency dependent first order
recursive smoothing factorα(m, l) for the calculation of
the system misalignmentD(m, l), designed according to
an MMSE approach. The system misalignment obtained
from the theoretically optimal smoothing factor led to an
exact estimate of the residual echo PSD. We derived two
approximations of the smoothing factor for the available
signals in a practical environment. One of the solutions
led to significantly improved results compared to the case
of using a fixed smoothing factor.
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