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ABSTRACT

Short time spectral attenuation (STSA) is the most commonly
used technique for single channel noise reduction. It reduces
the background noise and thus increases the signal-to-noise ratio
(SNR). However, only few reports are dealing with formal tests
of speech intelligibility measured in percent (SIP) for denoised
signals and if they do, the results indicate no improvement at all.
In this contribution we will show that those dissatisfying results
are not based on the fundamental principle of STSA. Introducing
a-priori knowledge can increase the SIP significantly. However,
all real-word algorithms have to rely on estimates of the signal
components. Therefore, we tested the estimation procedureand
the limiting factors. Finally, some encouraging experiments with
multi-channel estimators will be presented.

1. INTRODUCTION

Short time spectral attenuation (STSA) is the most com-
monly used technique for noise reduction. This very broad
class contains i.a. Wiener-Filtering, spectral subtraction
[1] and many multi-channel post-filter algorithms [2]. In
many studies and research papers the performance is mea-
sured in terms of signal-to-noise ratio (SNR) enhance-
ment or in terms of speech degradation like Log-Area-
Ratio Distance. Many papers show significant improve-
ment of speech quality. However, an improvement of speech
intelligibility has not been reported. One reason for this
missing information is the great burden to estimate speech
intelligibility in formal tests with statistical significance.
Also, some authors suggest that no improvement at all
can be achieved by using single-channel noise reduction
techniques [3, 4].
The remaining question is whether this behaviour is based
on the algorithm design or if it is a fundamental limita-
tion. And if there is no real limit, what are limitation fac-
tors for real world algorithms. In order to investigate these
questions, we build a very basic test setup, where the algo-
rithms have to enhance heavily disturbed speech signals,
but additionally have access to a-priori information of the
desired signal in order to estimate the needed information
like the power spectral density (PSD) of the undisturbed

speech signal. Finally a formal speech intelligibility test is
performed to measure the performance of the algorithms.

2. EXPERIMENTS

All algorithms described in this paper are based on the
same baseline system for frequency domain processing.
The input signals are divided into small overlapping blocks
(block length = 1024 samples, overlap 50%, sampling rate
= 44.1kHz). Each block is weighted with the square-root
of the Hann-Window and afterwards zero-padded. A stan-
dard FFT-algorithm is used to transform the signals into
the frequency domain. The complex spectrum is mul-
tiplied by the real valued transfer function of the time-
varying filter and the processed spectrum is transformed
back into the time domain. Finally, the standard overlap-
add system with weighted overlapped blocks is applied.
The weighting window is again the square-root of the Hann-
Window. This procedure guarantees transparent output
signals, if there is no signal processing and it prevents the
signal from being disturbed by small clicks introduced by
cyclic convolution, if the applied transfer function is not
constrained [5].

2.1. Signal Model

The used signal model is a weighted addition of the undis-
turbed signals(k) and the noise signal n(k).

x(k) = g s(k) + n(k) (1)

The weighting factorg is determined by the desired signal-
to-noise ratio (SNR) and both signals are uncorrelated.
All signals are transformed individually to introduce a-
priori knowledge to the different algorithms.
For the multi-channel experiments the signal model is

xi(k) = g s(k) + ni(k) (2)

whereni(k) are uncorrelated noise sources. Therefore,
the assumed noise field is spatially white.
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2.2. Estimation

In this contribution only algorithms using short-time spec-
tral attenuation based on power spectral densities (PSD)
are considered. The PSD estimation procedure is based
on the recursive Welch-periodogram, which is the stan-
dard technique for speech signal processing.

ΦXX(n, ℓ) = α(·)ΦXX(n, ℓ− 1) + (1 − α(·))|X(n, ℓ)|2,
(3)

whereX(n, k) is the spectrum of the signal x(k) with
block-indexℓ and frequency indexn. α(·) is a smooth-
ing constant. Equation 3 is used to estimate the PSD of the
speech signalΦSS(n, ℓ) and of the noise signalΦNN (n, ℓ).
The smoothing constantsαS andαN are set individually.

2.3. Tested Algorithms

We tested the following basic algorithms.

• Wiener-Filter:

H(n, ℓ) =
ΦSS(n, ℓ)

ΦSS(n, ℓ) + ΦNN (n, ℓ)
(4)

• Spectral subtraction without any modifications:

H(n, ℓ) =
ΦXX(n, ℓ) − ΦNN (n, ℓ)

ΦXX(n, ℓ)
(5)

• Ephraim and Malah (EM) logSTSA noise suppres-
sor [6]

• For comparison purposes the delay and sum beam-
former (D&S), which is the optimal Minimum Vari-
ance Distortionless Response (MVDR)-Beamformer
for the given uncorrelated noise field[7].

• A multi-channel post-filter given by [2]

HPF (n, ℓ) =
ΦYbYb

(n, ℓ)

ΦX1X1
(n, ℓ)

(6)

whereΦX1X1
is the PSD of one input channel and

ΦYbYb
is the output of the beamformer. This Post-

Filter (PF) is applied to a single input channel and
not to the beamformer output, in oder to be compa-
rable to the other algorithms.

2.4. Speech Intelligibility Measurement

The measurement of SIP can be done by asking listeners
how many and which words they understand in a nonsense
sentence. The Oldenburger speech sentence test is based
on this procedure [8]. It ist based on a closed set of 50
words connected to sentences, which may have no mean-
ing. The order of the words is always a name, a verb, a
number, an adjective and a noun. The noise is designed

Figure 1: Graphical User Interface for a speech sentence
test with a closed set of words.

to have exactly the same long-term spectral density as the
speech signal. It is generated by mixing hundreds of the
speech signals with different starting points. Normally,
these tests are designed to find the SNR at which 50%
of the words are correctly identified (Speech Reception
Threshold (SRT)). We are using a slightly different ver-
sion of the test in order to measure the percentages of cor-
rect words, and we are not using any operator. See fig-
ure 1 for the Graphical User Interface (GUI). The words
are in German, since our five test persons are German
students. All of them have normal hearing capabilities,
checked with a tonal audiometry test.
The mixed and enhanced signals are provided via head-
phones (closed system , Sennheiser HDA 200). The head-
phone is calibrated to 65 dB SPL (Sound Pressure Level)
for the noise. The speech signal gets softer for negative
SNRs, starting at -3dB.

2.5. Tested Situations

The following settings for the algorithms have been tested:

1. Test: For the very basic test we used full a-priori
knowledge (ΦSS(n, ℓ) is known) and the Wiener-
Filter. The smoothing constants are set to zero. There-
fore, all PSDs are estimated by simple periodograms.

2. Test: In this test the basic spectral subtraction algo-
rithm is tested with all smoothing constants set to
zero

3. Test: Since the Wiener-Filter depends heavily on
a-priori knowledge we decided to perform the next
test with spectral subtraction only. We varied the
smoothing constantsαN from zero to close to one,
whereasαX was set to zero. The noise estimate
ΦNN (n, ℓ) is based on the pure noise signaln(k)
and is not estimated from the disturbed speech sig-
nalx(k). The SNR was set to−12dB, which means
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that unprocessed signals are not intelligible (see fig-
ure 3).

4. Test: For comparison purposes we included a well
tuned Ephraim and Malah algorithm [6]. For noise
estimation the pure noise signal with a high smooth-
ing factor (αN = 0.96) was used.αX was set to
0.4.

5. Test: The D&S was implemented in the time do-
main and it is no STSA algorithms. We used four
channels. In this case, the D&S will reduce the
noise level by 6 dB by averaging the uncorrelated
noise without introducing any artefacts.

6. Test: Finally, the Post-Filter (PF) was estimated with-
out any a-priori knowledge with time constants set
to zero.

3. RESULTS AND CONCLUSIONS

The following results and conclusions can be given for the
different tests:

1. The results for the unprocessed speech are given in
figure 3. You can see the results (diamonds) for
five input SNRs and the psycho-metric function [8]
which was computed to fit for the five measure-
ments. One important result is, that speech intelligi-
bility is a very steep function, which starts at -15dB
and ends at -5dB for normal hearing persons. All
algorithms have to deal with negative input SNRs.

2. The results for the Wiener-Filter are 100% speech
intelligibility for all tested SNRs down to -24dB.
This result can be explained by the fact thatΦSS is
known a-priori. From -9dB down the mixed signal
is more or less pure noise. However, the Wiener-
filter based on the true speech signal shapes this
noise into the corresponding spectrum of the speech
and attenuates the whole signal. The result is some
artificial whisper speech, without any tonal compo-
nents. This kind of speech is completely intelligible
for the average person. A very similar signal can
easily be constructed by randomizing the phase of
a speech signal. This is known as whisperization as
a special effect [9]. If the SNR gets very low, parts
of the signal spectrum are getting below the hear-
ing threshold in quiet, and eventually the SIP will
decrease below 100%.

3. The results for the spectral subtraction algorithm
are very similar as for the Wiener-Filter, because the
estimate of the speech signal is very close to the one
based on the speech signal directly. The speech in-
telligibility rate is 100% at all SNRs. However, the
signals are not that pleasant and some musical tones

0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Smoothing constant α
NN

 →

S
pe

ec
h 

in
te

lli
gi

bi
lit

y 
[%

] →

Per. 1
Per. 2
Per. 3
Per. 4
Per.5
Mean

Figure 2: Speech intelligibility in percent for varyingαN

(spectral subtraction, SNR = -12dB,αX = 0)

are introduced. This behaviour can be explained
by the mismatch betweenΦNN and the noise con-
tained inΦXX , because of constructive and destruc-
tive interference between signal and noise in the
time-domain mixing process.

4. Figure 2 shows the SIP vs. smoothing constantαN

for five individuals and the resulting average. It can
be seen clearly that increasingαN decreases the
SIP. This can be explained by the increasing dis-
crepancy between the noise estimateΦNN based
on averages and the noise contained inΦXX which
is still a simple periodogram estimate. In order to
verify this conclusion, we changed bothαX and
αN equally and found that the SIP is very close to
100% up toαN,X = 0.95. The resulting signal only
sounded more reverberated.

5. For the EM no significant improvement in terms of
speech intelligibility can be reached (see figure 3).
This complies with the results reported in [Wit01].

6. The results for the D&S are shown in figure 3 on
the left side. The SNR shift compared to the unpro-
cessed signal is given by the 6dB SNR-enhancement
of the D&S with no additional artefacts in the out-
put signal.

7. The post-filter applied to a single input channel gives
comparable performance to the D&S (see figure 3
crosses), which is interesting since it has introduced
typical artefacts of STSA-algorithms. These results
indicate that STSA algorithms based on multi-channel
systems are promising candidates for future exten-
sions in order to overcome the problem of noise es-
timation.
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Figure 3: Speech intelligibility in percent for different algorithms (⋄ = Unprocessed,⊳= Ephraim and Malah� =, Delay
and Sum, x = PF(1chn))

Some meaningful examples will be provided on the home-
page of the Institute of Hearing-technology and Audiol-
ogy (IHA).

4. FINAL CONCLUSIONS

In this paper we have shown that STSA algorithms are
able to improve speech intelligibility (SI) in principal. How-
ever, the underlying estimate of the PSDs is the critical
aspect. Every deviation from the exact noise estimate to
the noise estimated in the disturbed signal will decrease
the performance significantly. This deviation can be in-
troduced by smoothing in the time or frequency domain or
other estimation errors. Therefore, known single-channel
algorithms will fail to improve SI in real world scenarios,
where the noise has to be estimated in speech pauses or
by using clever smoothing techniques. In contrast, it is
possible to improve SI, if multi-channel based algorithms
are used to estimate the filter transfer functions. However,
very first results suggest that the combination of the beam-
former output with the post-filter will not improve the SI
further. We have no explanation for this behaviour so far.
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